Biology, Biological Science/Education Concentration (M.S.) - Graduate - 2012 University Catalog

You are viewing the 2012 University Catalog. Please see the newest version of the University Catalog for the most current version of this program's requirements.

The graduate programs in the Biology and Molecular Biology Department are designed to enable a student to develop his or her preparation for a career in biological fields requiring advanced training or for the teaching profession.

Research facilities of the Biology and Molecular Biology Department are maintained in Science Hall and include specialized equipment for molecular biology, electron microscopy, botany, microbiology, immunology, aquatic biology, tissue culture, animal behavior, and cell physiology. Additionally, the facilities at the New Jersey Marine Sciences Consortium, New Jersey School of Conservation, and other departments in the College of Science and Mathematics are available for cooperative graduate research. Faculty research interests include aquatic and terrestrial ecology, developmental biology, parasitology, microbiology, immunology, cell physiology, molecular biology, plant physiology, entomology and evolutionary mechanisms. The Biology and Molecular Biology Department has recently established a state-of-the-art molecular biology laboratory for teaching both introductory and advanced courses in molecular biology and biotechnology.

The Biology and Molecular Biology Department offers thesis and non-thesis students opportunity for graduate research under faculty supervision in selected areas of biology. Original research should not exceed 8 semester hours for thesis students and 5 semester hours for non-thesis students. Students must complete a minimum of 26 semester hours in biology , 9 hours of required courses, a minimum of 5 hours of research and a maximum of 18 hours of electives.

The MS in Biology with a concentration in Biology Science Education is intended for certified Biology teachers interested in enhancing and updating their content expertise, exploring and conducting research on biology learning, and expanding their insights into pedagogy. Students will complete 32 semester hours of coursework in biology, biology education, and curriculum and teaching and/or educational foundations. Students must take a minimum of 20 credits in biology and 6 credits in College of Education and Human Services and can take a maximum of 6 credits outside the department including BIOL courses taken as a non-matriculated student, courses taken in other MSU departments, and courses transferred from other institutions. Students must receive a B or better in these courses and the credits can not have counted toward another degree.

This is a non-thesis program that can include graduate research under faculty supervision. Introduction to Biological Research (BIOL 599) as well as Research in Biological Literature (BIOL 597) within this concentration will focus on science education as it applies to Biology. Original research (BIOL 599) should not exceed 4 credits.

The MS in Biology with a concentration in Molecular Biology addresses the needs of Biology educators, other Biology professionals and those wishing to re-tool their job skills. This program helps to meet the challenges of improving science literacy and implementing new science curriculum standards, and to meet the needs of surrounding biotechnology and pharmaceutical companies.  Hands-on experience is emphasized and real world problems are presented to the students.  Students also get a firm grounding in molecular biology theory.

ADMISSIONS

Prior to matriculation for the Master of Science degree in biology, the student should have completed a subject matter of at least twenty-four semester hours in biology and have adequate preparation in college chemistry, mathematics and physics.

In cases where there has been a weak undergraduate program in the major and/or collateral fields, prerequisite courses, which will not count towards graduate credit, may be assigned.

The matriculation program for MS candidates is prepared in consultation with the biology Graduate Program Coordinator. Changes in the program can be made only with the written approval of the Graduate Program Coordinator. It is the responsibility of the student to keep the coordinator informed of progress in the program.

A successful interview by the department committee is also required.

In addition to these requirements listed for the MS in Biology, candidates for admission to the Biology Science Education Concentration must have teaching certification in Biology.


BIOLOGY w/CONC:BiolSci/Education

Complete 32 semester hours including the following 5 requirement(s):

  1. REQUIRED COURSES

    Complete the following 2 requirement(s):

    1. Complete 1 course for 3 semester hours from the following list

      BIOL 520 Plant Physiology (3 hours lecture) 3
      BIOL 540 Mammalian Physiology (3 hours lecture) 3
    2. Complete 2 courses for 6 semester hours:

      BIOL 547 Molecular Biology I (3 hours lecture) 3
      BIOL 570 Ecology (3 hours lecture) 3
  2. BIOLOGY SCIENCE EDUCATION CONCENTRATION

    Complete the following 2 requirement(s):

    1. Complete 3 courses for 9 semester hours:

      BIOL 510 Biology Pedagogy for Secondary Teachers (3 hours lecture) 3
      BIOL 601 Advanced Biological Science Education Pedagogy (3 hours lecture) 3
      CURR 530 Principles of Curriculum Development (3 hours lecture) 3
    2. Complete 1 course for 3 semester hours .

  3. BIOLOGY ELECTIVES

    Complete 10 semester hours from the following list.

    BIOL 500 Introductory Molecular Cell Biology (1.5 hours lecture) 1.5
    BIOL 501 Biology of Human Sexuality (3 hours lecture) 3
    BIOL 503 Teaching Science in Secondary Schools (4 hours lecture) 4
    BIOL 505 Experimental Cell Culture (2 hours lecture, 2 hours lab) 3
    BIOL 510 Biology Pedagogy for Secondary Teachers (3 hours lecture) 3
    BIOL 512 Topics in Modern Genetics (3 hours lecture) 3
    BIOL 514 Graduate Seminar in Biology (2 hours seminar) 2
    BIOL 515 Population Genetics (3 hours lecture) 3
    BIOL 516 Biogeography (3 hours lecture) 3
    BIOL 518 Strategies for Teaching College Biology (1 hour lecture) 1
    BIOL 520 Plant Physiology (3 hours lecture) 3
    BIOL 521 Field Studies of Flowering Plants (2 hours lecture, 4 hours lab) 4
    BIOL 522 Plant Pathology (2 hours lecture, 2 hours lab) 3
    BIOL 523 Mycology (2 hours lecture, 2 hours lab) 3
    BIOL 529 Advanced Herpetology (3 hours lecture and 3 hours lab) 4
    BIOL 532 Advanced Entomology (3 hours lecture) 3
    BIOL 533 Advanced Cell Biology (3 hours lecture) 3
    BIOL 540 Mammalian Physiology (3 hours lecture) 3
    BIOL 542 Advanced Endocrinology (3 hours lecture) 3
    BIOL 543 Advances in Immunology (3 hours lecture) 3
    BIOL 544 Advanced Comparative Animal Physiology (3 hours lecture, 3 hours lab) 3
    BIOL 545 Experimental Endocrinology (1 hour lecture, 6 hours lab) 4
    BIOL 546 Topics in Physiology (3 hours lecture) 3
    BIOL 547 Molecular Biology I (3 hours lecture) 3
    BIOL 548 Molecular Biology II (3 hours lecture, 3 hours lab) 4
    BIOL 549 Topics in Developmental Biology (3 hours lecture) 3
    BIOL 550 Topics in Microbiology (3 hours lecture) 3
    BIOL 551 Intermediary Metabolism I (3 hours lecture) 3
    BIOL 552 Biology of Lipids (3 hours lecture) 3
    BIOL 553 Microbial Ecology (3 hours lecture, 3 hours lab) 4
    BIOL 554 Microbial Physiology (3 hours lecture) 3
    BIOL 555 Medical Genetics (3 hours lecture) 3
    BIOL 556 Molecular Biology of Proteins (3 hours lecture) 3
    BIOL 557 Virology (3 hours lecture) 3
    BIOL 558 Microbial Genetics (3 hours lecture) 3
    BIOL 560 Molecular Genetics (3 hours lecture) 3
    BIOL 561 Genomics (3 hours lecture) 3
    BIOL 562 Short Topics in Molecular Biology (1 hour lecture) 1
    BIOL 563 Statistical Genomics (3 hours lecture) 3
    BIOL 564 Proteomics (3 hours lecture) 3
    BIOL 565 Advanced Plant Molecular Genetics (3 hours lecture) 3
    BIOL 566 Bioinformatics (3 hours lecture, 2 hours lab) 4
    BIOL 568 Advanced Neuroscience (3 hours lecture) 3
    BIOL 570 Ecology (3 hours lecture) 3
    BIOL 571 Physiological Plant Ecology (2 hours lecture, 4 hours lab) 4
    BIOL 572 Wetland Ecology (2 hours lecture, 4 hours lab) 4
    BIOL 574 Behavioral Ecology (3 hours lecture) 3
    BIOL 575 Avian Biology (3 hours lecture, 3 hours lab) 4
    BIOL 576 Biology of Extreme Habitats (3 hours lecture) 3
    BIOL 579 Physiological Ecology of Animals (3 hours lecture) 3
    BIOL 580 Evolutionary Mechanisms (3 hours lecture) 3
    BIOL 586 Selected Avanced Topics in Biology 3-4
    BIOL 587 Selected Advanced Topics in Molecular Biology (3 hours lecture, 2 hours lab) 3-4
    BIOL 588 Selected Advanced Topics in Physiology (3 hours lecture, 2 hours lab) 3-4
    BIOL 589 Selected Advanced Topics in Ecology (3 hours lecture, 2 hours lab) 3-4
    BIOL 592 Graduate Colloquium (1 hour lecture) 1
    BIOL 593 Molecular Ecology (3 hours lecture) 3
    BIOL 594 Signal Transduction (3 hours lecture) 3
    BIOL 595 Conservation Biology: The Preservation of Biological Diversity (3 hours lecture) 3
    BIOL 596 Selected Techniques in Biology Science Education (1 hour lecture, 2 hours lab) 1.5
    BIOL 597 Research in Biological Literature 1
    BIOL 598 Selected Techniques in Molecular Biology (1 hour lecture, 2 hours lab) 1.5
    BIOL 599 Introduction to Biological Research 4
  4. RESEARCH IN BIOLOGICAL LITERATURE

    Complete for 1 semester hours.

    BIOL 597 Research in Biological Literature 1
  5. COMPREHENSIVE EXAMINATION

    Successfully complete the Comprehensive Examination.


Course Descriptions:

BIOL500: Introductory Molecular Cell Biology (1.5 hours lecture)

This course will focus on an introduction to the science and methods of cell and molecular biology. 1.5 sh.

Prerequisites: Permission of graduate advisor.

BIOL501: Biology of Human Sexuality (3 hours lecture)

The course is designed to introduce the student in the graduate program in human sexuality and family life education to human anatomy and physiology, human genetics, endocrinology of the reproductive system and human developmental biology. These fields of knowledge are necessary in order to adequately understand and teach others about human sexuality, as well as to adequately counsel those who require assistance. 3 sh.

Prerequisites: Open only to graduate students in the College of Education and Human Services.

BIOL503: Teaching Science in Secondary Schools (4 hours lecture)

This course is designed for pre-service teachers and considers the standards-based objectives, curricula, planning, instructional strategies, materials, assessment, health and safety, and legal responsibilities in the secondary science program. The use of technology in the science program will be emphasized. 4 sh.

Prerequisites: Admission to the Teachers Education program for P-12 science certification.

BIOL505: Experimental Cell Culture (2 hours lecture, 2 hours lab)

This graduate course will provide theoretical and practical experience working on living cells. Provides understanding, observation, and hands-on experiences in tissue and organ culture techniques, primary cell culturing, cell differentiation, and techniques in toxicity and mutagenicity assays, plant callus and protopast experimentation. 3 sh.

Prerequisites: BIOL 380, or similar Genetics course with passing grade and a previous Microbiology course or experience.

BIOL510: Biology Pedagogy for Secondary Teachers (3 hours lecture)

Seminar and research course designed for study of methods and practices being used in teaching of secondary school biology. 3 sh.

Prerequisites: 24 semester hours in biology.

BIOL512: Topics in Modern Genetics (3 hours lecture)

Seminar course. Selected topics from current development in genetic research, including chromosome and gene fine structure, extra chromosomal genetic elements, genetic engineering, and aspects of biomedical genetic research. May be repeated once for a maximum of 6.0 credits as long as the topic is different. 3 sh.

Prerequisites: Undergraduate course in genetics.

BIOL514: Graduate Seminar in Biology (2 hours seminar)

Through a series of seminars delivered by faculty and guests, students will survey a broad range of topics in modern biology, and be introduced to the variety of specializations represented within the department. Emphasis shall be placed on recent advances in diverse areas of biology. 2 sh.

Prerequisites: Graduate biology majors only.

BIOL515: Population Genetics (3 hours lecture)

Detailed survey of the theory and application of the genetics of popoulations. Topics to be covered include Hardy-Weinberg Equilibrium and Evolution, Natural and Artificial Selection, Migration, Mutation, Bottlenecks, Random Genetic Drift, and Genetic Variation. Students will learn population genetic principles and the mathematical theory behind those principles. Students will be required to write a literature paper on a topic of their choice related to Population Genetics. 3 sh.

Prerequisites: BIOL 547 or permission of instructor.

BIOL516: Biogeography (3 hours lecture)

Distribution of plants and animals of the world on continents and continental and oceanic islands and in various climatic zones. 3 sh.

Prerequisites: Field course in biology.

BIOL518: Strategies for Teaching College Biology (1 hour lecture)

Biology Teaching Assistants and upper-level undergraduates with interests in teaching will interact with experienced teachers, but more importantly will gain access to a forum for discussing their experiences and concerns with other prospective biology teachers. Students will discuss contemporary articles on science teaching at the college level. 1 sh.

Prerequisites: B.S. in Biology and departmental approval.

BIOL520: Plant Physiology (3 hours lecture)

Investigation of physiology of plants. Plant growth, development and reproduction as well as the new advances in plant physiology. Water relations of plants, mineral nutrition, physiological significance of soil and soil moisture, photosynthesis, respiration, plant biosynthesis and dynamics of growth. 3 sh.

Prerequisites: Permission of instructor.

BIOL521: Field Studies of Flowering Plants (2 hours lecture, 4 hours lab)

The taxonomy, evolutionary trends and ecological adaptations of the gymnosperms and angiosperms. A variety of habitats will be visited and analyzed. 4 sh.

Prerequisites: Botany and field course in biology.

BIOL522: Plant Pathology (2 hours lecture, 2 hours lab)

Causes, symptoms, and control of plant diseases. 3 sh.

Prerequisites: Botany and microbiology.

BIOL523: Mycology (2 hours lecture, 2 hours lab)

Identification, and classification of fungi. 3 sh.

Prerequisites: Botany and microbiology.

BIOL529: Advanced Herpetology (3 hours lecture and 3 hours lab)

Biology of the extant ectothermic tetrapods (amphibians and non-avian reptiles), including field identification, systematics, anatomy, physiology, behavior, reproduction, and ecology. 4 sh.

Prerequisites: BIOL 113.

BIOL532: Advanced Entomology (3 hours lecture)

Examination of insects as model systems for biological inquiry. Topics include an integrative treatment of insect molecular biology, genetics, physiology, behavior, evolution and ecology. 3 sh.

Prerequisites: Matriculation in M.S. Biology program or permission of instructor.

BIOL533: Advanced Cell Biology (3 hours lecture)

Detailed analysis of cellular structure and function. Topics to be covered include the role of subcellular organelles in maintaining cell viability, analysis of cytoskeletal components, structure and function of the plasma membrane and cellular defects that lead to cancer and other disease states. 3 sh.

Prerequisites: Matriculation in the biology master's program or permission of professor.

BIOL540: Mammalian Physiology (3 hours lecture)

A broad survey of the physiology of mammalian systems aimed at graduate students who lack an upper-level background in physiology at the undergraduate level. The principles of homeostatis mechanisms as they apply to various organ systems will be stressed. 3 sh.

Prerequisites: Graduate standing, but not open to students who have completed undergraduate upper division Mammalian/Human Physiology classes.

BIOL542: Advanced Endocrinology (3 hours lecture)

A study of the physiology of the mammalian endocrine system with emphasis on hormonal control of homeostasis. 3 sh.

Prerequisites: Endocrinology and cell biology.

BIOL543: Advances in Immunology (3 hours lecture)

To study in detail selected topics in immunology. 3 sh.

Prerequisites: Immunology.

BIOL544: Advanced Comparative Animal Physiology (3 hours lecture, 3 hours lab)

The physiological mechanisms involved in the varied responses of both vertebrates and invertebrates to critical fluctuations of their physico-chemical environment. 3 sh.

Prerequisites: Undergraduate degree in Biology or permission of instructor. Students who have previously completed BIOL451 may not enroll.

BIOL545: Experimental Endocrinology (1 hour lecture, 6 hours lab)

A seminar and laboratory course in endocrinology in which the various endocrine glands will be surgically removed or chemically destroyed and the morphologic and physiologic effects measured and observed. 4 sh.

Prerequisites: Endocrinology.

BIOL546: Topics in Physiology (3 hours lecture)

To give the student an in-depth understanding of a specific area of physiology in which there is a rapidly expanding body of knowledge. May be repeated once for a maximum of 6.0 credits as long as the topic is different. 3 sh.

Prerequisites: An undergraduate or graduate course in Physiology and permission of the department.

BIOL547: Molecular Biology I (3 hours lecture)

Central concepts at the cellular level will be emphasized. Contemporary viewpoints in the areas of biomolecules, energy yielding and energy requiring processes and transfer of genetic information. 3 sh.

Prerequisites: Cell biology, and one year organic chemistry.

BIOL548: Molecular Biology II (3 hours lecture, 3 hours lab)

Central concepts at the cellular level will be emphasized. Contemporary viewpoints in the areas of biomolecules, energy yielding and energy requiring processes and transfer of genetic information. The laboratory will deal with up-to-date investigative procedures via selected experiments. 4 sh.

Prerequisites: BIOL 547.

BIOL549: Topics in Developmental Biology (3 hours lecture)

Seminar in the regulation of developmental events, including both classical morphogenesis and recent advances using techniques of cell and molecular biology. May be repeated once for a maximum of 6.0 credits as long as the topic is different. 3 sh.

Prerequisites: Genetics and developmental embryology.

BIOL550: Topics in Microbiology (3 hours lecture)

Coverage of selected topics such as the microbial genetics, antibiotic action, bacteriophage, virus, cancer and microbial metabolism. Emphasis will be placed on practical applications of modern research in specific areas. May be repeated once for a maximum of 6.0 credits as long as the topic is different. 3 sh.

Prerequisites: Microbiology.

BIOL551: Intermediary Metabolism I (3 hours lecture)

Discussion of interrelationships of catabolic and anabolic paths. Primary emphasis is placed on the metabolism of nucleic acids, carbohydrates, and proteins. 3 sh.

Prerequisites: Biochemistry and cell biology.

BIOL552: Biology of Lipids (3 hours lecture)

Biological cycles, unity and diversity in metabolic paths, metabolic evolution, metabolic control mechanisms and other special topics. Primary emphasis is placed on the metabolism of lipids. 3 sh.

Prerequisites: Cell biology and organic chemistry.

BIOL553: Microbial Ecology (3 hours lecture, 3 hours lab)

Exploration of the essential role of microorganisms in the ecosystem. Lecture, field trips and laboratory will demonstrate the ubiquitous and highly adaptive evolution of microorganisms, their interrelationships and their profound influence on the biosphere. 4 sh.

Prerequisites: Microbiology.

BIOL554: Microbial Physiology (3 hours lecture)

A study of microorganisms in terms of their morphology and metabolism. The significance of metabolic diversity and secondary metabolic products of various microorganisms will be explored through lecture topics. The economic significance of microbial metabolism in relation to industry and pathogenic diseases will be emphasized. 3 sh.

Prerequisites: Microbiology.

BIOL555: Medical Genetics (3 hours lecture)

A detailed study and analysis of human genetics, inborn genetic diseases, genomics, gene therapy, and the Human Genome Project. 3 sh.

Prerequisites: A genetics course or permission of instructor.

BIOL556: Molecular Biology of Proteins (3 hours lecture)

Study of the molecular biology of biomolecules, including proteins. The course will examine how changes in the three dimensional structure of biomolecules affect their biological function. Protein engineering, enzyme catalysis, and site-directed mutagenesis will be discussed. 3 sh.

Prerequisites: Admission into the graduate biology program or permission of department.

BIOL557: Virology (3 hours lecture)

This course will develop the fundamental principles of modern virology and examine the connection between viruses and disease. It will examine the molecular biology of virus replication, infection, gene expression, the structure of virus particles and genomes, pathogenesis, classification of viruses, and contemporary viral research. 3 sh.

Prerequisites: Satisfactory completion of a Cell & Molecular Biology course or permission of instructor.

BIOL558: Microbial Genetics (3 hours lecture)

Microbial Genetics provides students with an understanding of the basis for genetic processes in microorganisms and the implication for higher organisms. The focus of the course will be on prokaryotes, particularily E.coli, and viruses, primarily bacteriophages. Current developments in microbial genetics, such as bioinformatics and genomics, will be presented. 3 sh.

Prerequisites: BIOL 350, Microbiology.

BIOL560: Molecular Genetics (3 hours lecture)

A course that will focus on biological research problems that are being addressed in eucaryotic systems from a molecular genetics viewpoint. 3 sh.

Prerequisites: BIOL 547 with a grade of "B" or better.

BIOL561: Genomics (3 hours lecture)

Describes the entire DNA sequence of organisms. Faciltates the understanding of the function of the genomes. Specific topics include comparative genomics, functional genomics and bioinformantics. 3 sh.

Prerequisites: BIOL 380 or permission of instructor.

BIOL562: Short Topics in Molecular Biology (1 hour lecture)

Focus on specific topics in molecular biology including the development induced pleuripotent cells, advances in RNA interference and recent innovations in understanding transcriptional regulation. Emphasis will be placed on providing the most up to date information on these topics. May be taken for up to 6 credits as long as the topics are different. 1 sh.

Prerequisites: BIOL 547.

BIOL563: Statistical Genomics (3 hours lecture)

Introduction to the statistical problems arising recently in gene mapping, high throughputomic data analysis, phylogenetics and sequence analysis by integrating of both statistics and genomics. To learn the statistical methods and concepts that are of particular use in analyzing genetics and genomic data. 3 sh.

Prerequisites: BIOL 547 and STAT 401 or equivalent Statistics course as determined by department.

BIOL564: Proteomics (3 hours lecture)

Proteomics is the study of the entire complement of proteins expressed by a genome. This course will describe the structure of the proteins in the proteome and the functional interaction between the proteins and cover the development of large-scale technologies for protein separation, isolation, detection and quantitation. 3 sh.

Prerequisites: BIOL 547.

BIOL565: Advanced Plant Molecular Genetics (3 hours lecture)

This course will focus on plant molecular biology and genetics and how plant systems differ from other eucaryotic systems at a cellular level. 3 sh.

Prerequisites: BIOL 547, minimum grade of B.

BIOL566: Bioinformatics (3 hours lecture, 2 hours lab)

Describes the computational analysis of gene sequences, protein structures, and expression datasets on a large scale. Provides a way in which to manage and store huge amounts of data, and to create statistical tools for analyzing it. Specific topics include biological database search tools, DNA sequence alignment and comparison, analysis of protein structure, and phylogenetics analysis, as well as topics of current interest. 4 sh.

Prerequisites: BIOL 547.

BIOL568: Advanced Neuroscience (3 hours lecture)

The students will achieve an understanding of current concepts of nervous system function at the cellular level and at the level of higher systems and brain. The students will learn about the state of the art methods in modern neuroscience research and their applications. They will summarize and critique primary research papers and develop research proposals based on the acquired knowledge and their vision of future progress in neuroscience. A particular attention will be given to the molecular and cellular mechanisms of neurological diseases, and to current scientific approaches to treatment. 3 sh.

Prerequisites: BIOL 547 or departmental approval.

BIOL570: Ecology (3 hours lecture)

Basic ecological principles and concepts. Habitat approach to field exercises in fresh water and terrestrial ecology. Intra and interspecific relationships with all living members of the ecosystem, problems in plant and animal biology. 3 sh.

Prerequisites: Botany and zoology.

BIOL571: Physiological Plant Ecology (2 hours lecture, 4 hours lab)

The effects of soil, light, and water on plant growth, as well as, toxic effects of metals and salinity are measured using growth chamber and greenhouse facilities. 4 sh.

Prerequisites: Botany and one course in field biology.

BIOL572: Wetland Ecology (2 hours lecture, 4 hours lab)

Important biotic, chemical and physical parameters of New Jersey's estuaries. Evolution and successional trends of estuarine communities. Ecology of individual communities studied by field trips to Delaware Bay shore and to some Atlantic coast bays, marshes and offshore barrier islands. Also offered at the New Jersey Marine Sciences Consortium. 4 sh.

Prerequisites: Botany, and zoology, and field biology.

BIOL574: Behavioral Ecology (3 hours lecture)

This seminar course explains the ecological consequences of animal behavior, viewed within the context of how behavior evolves and how populations adapt to their environments. 3 sh.

Prerequisites: Field biology and zoology.

BIOL575: Avian Biology (3 hours lecture, 3 hours lab)

An in-depth examination of the biology and life histories of birds, including their anatomy, physiology, behavior, ecology and systematics. Laboratory includes field trips on a varying schedule. 4 sh.

Prerequisites: BIOL 570 or permission of instructor.

BIOL576: Biology of Extreme Habitats (3 hours lecture)

The course will describe the adaptations that allow the survival of plants and animals, as well as microorganisms, in a variety of extreme habitats. Some of these habitats include: deserts, arctic, grassland, estuaries. 3 sh.

BIOL579: Physiological Ecology of Animals (3 hours lecture)

A variety of different animals, ranging from protists to mammals, will be examined and compared to demonstrate the physiological adaptations they have evolved to successfully survive and reproduce. 3 sh.

Prerequisites: Graduate standing in Biology or permission of instructor.

BIOL580: Evolutionary Mechanisms (3 hours lecture)

This course will provide students the opportunity to read primary resource material and interpret the findings of the data. This course will also teach students how to read, critique and present scientific data to a peer group. Students will analyze, discuss and present primary research articles with respect to scientific content, accuracy of the data and significance of the experiments. 3 sh.

Prerequisites: Matriculation in the biology master's program or permission of the instructor.

BIOL586: Selected Avanced Topics in Biology

This course is designed to provide advanced biology graduate students with a literature intensive exploration of current developments and specialized content in the biological sciences. Topics will cover specific research areas in ecology, physiology, molecular biology, embryology and bioinformatics. This course is designed to fulfill elective requirements of the biology masters degree. This course may be repeated once for a maximum of 8.0 credits. 3 - 4 sh.

Prerequisites: BIOL 520 or BIOL 540 or BIOL 547 or BIOL 570.

BIOL587: Selected Advanced Topics in Molecular Biology (3 hours lecture, 2 hours lab)

This course is designed to provide advanced biology and molecular biology graduate students with a literature intensive exploration of current developments and specialized content in the biological sciences. Topics will cover specific research areas in molecular biology. This course is designed to fulfill elective requirements of the biology masters degree and the molecular biology masters degree. 3 - 4 sh.

Prerequisites: BIOL 547.

BIOL588: Selected Advanced Topics in Physiology (3 hours lecture, 2 hours lab)

This course is designed to provide advanced biology and molecular biology graduate students with a literature intensive exploration of current developments and specialized content in the biological sciences. Topics will cover specific research areas in physiology. This course is designed to fulfill elective requirements of the biology masters degree and the molecular biology masters degree. 3 - 4 sh.

Prerequisites: BIOL 520 or BIOL 540.

BIOL589: Selected Advanced Topics in Ecology (3 hours lecture, 2 hours lab)

This course is designed to provide advanced biology and molecular biology graduate students with a literature intensive exploration of current developments and specialized content in the biological sciences. Topics will cover specific research areas in ecology. This course is designed to fulfill elective requirements of the biology masters degree and the molecular biology masters degree. 3 - 4 sh.

Prerequisites: BIOL 570.

BIOL592: Graduate Colloquium (1 hour lecture)

Students in this course will read primary resource material and interpret the data. This course will also teach students how to read, critique and present scientific data to a peer group. Students will analyze, discuss and present primary research articles with respect to scientific content, accuracy of the data and significance of the experiments. 1 sh.

Prerequisites: Matriculation in the biology master's program or permission of the professor.

BIOL593: Molecular Ecology (3 hours lecture)

Detailed survey of the application of molecular methods to address ecological, behavioral, and conservation questions. Topics to be covered include the principles of most common molecular techniques used in molecular ecology, and application of those molecular techniques to phylogeography, behavioral ecology, population genetics, conservation genetics, and adaptive variation. Students will develop and present independent research proposal. 3 sh.

Prerequisites: BIOL 547 or instructor's permission.

BIOL594: Signal Transduction (3 hours lecture)

This course will cover various aspects of cellular signaling from the plasma membrane to the nucleus. Topics will include specific signal transduction systems, methods for studying these systems and the results of these signaling events on cell division, cell differentiation and cell function. 3 sh.

Prerequisites: BIOL 547 or permission of instructor.

BIOL595: Conservation Biology: The Preservation of Biological Diversity (3 hours lecture)

This course addresses concerns about the loss of biological diversity and genetic resources through species extinctions. Students will learn about the importance of maintaining biological diversity, the problems involved in monitoring and protecting sensitive and crucial habitat, the impact of human societies on biodiversity, the alternatives to the destruction of habitat/species, the prospects of restoration, and the policies needed to prevent the loss of biological diversity. Students will also learn about population processes that are directly related to species survival. This course is cross listed with CNFS 595. 3 sh.

Prerequisites: Botany, and zoology, and field biology.

BIOL596: Selected Techniques in Biology Science Education (1 hour lecture, 2 hours lab)

A laboratory course that trains teachers in manipulatives suitable for secondary biology education. Students will be introduced to a variety of physiological, ecological, molecular biological techniques applicable for implementation in secondary school classrooms. May be repeated three more times for a total of six semester hours. 1.5 sh.

Prerequisites: Biology teaching certification or approval of instructor.

BIOL597: Research in Biological Literature

To allow the student to investigate and evaluate a specific topic in biology under the supervision of a faculty member and to develop the student's skills in presenting current research in both the written and oral modes. 1 sh.

Prerequisites: Departmental approval.

BIOL598: Selected Techniques in Molecular Biology (1 hour lecture, 2 hours lab)

A laboratory course that trains students in advanced techniques in molecular biology. Students will learn how to perform a specific technique as well as learning the theory behind the technique. May be repeated three times for a maximum of 6.0 credits. 1.5 sh.

Prerequisites: Undergraduate or graduate molecular biology courses or equivalent and permission of instructor.

BIOL599: Introduction to Biological Research

A research experience in which students will be exposed to current biologic techniques by working with scientific investigators in industry, or within the department. Students will work on projects involving research techniques, data collection and the analysis and interpretation of the data. 4 sh.

Prerequisites: Departmental approval.

BIOL601: Advanced Biological Science Education Pedagogy (3 hours lecture)

This course aims for the development of an understanding of the pedagogy of inquiry-based learning and of the processes of scientific investigation and reasoning, as well as other factors influencing effective teaching (e.g. equity issues, assessment methods, and communication skills). Modeling of the inquiry-based approach will be applied to a range of scientific concepts, focusing on biological concepts such as natural selection, meiosis and Mendelian genetics, and photosynthesis. As these concepts are explored, relevant science education literature will be examined in order to understand the nature of student conceptions as well as broader issues of constructivist and situated learning and implications of philosophy and sociology of science for science education. 3 sh.

CURR530: Principles of Curriculum Development (3 hours lecture)

Philosophic, social and economic forces in our society that have determined and will determine the pattern of curriculum in American education in the American public schools from K-12 grades. Accepted manner of designing such curricula and professional bodies and individuals who play leading roles in the process of curriculum design. Connection of community interest and power structures in society which are related to the professional decisions. 3 sh.