Research

Current Projects

  • Herpetofauna River Road Crossing Project in Bedminster, NJ
    wildlife crossing sign

    In the Spring of 2010, Montclair State University surveyed amphibian and reptile populations along River Road at Bedminster, New Jersey. The study recorded 782 reptiles and amphibians within the 8 weeks study period. The results of this study signified that road mortality might have tremendously impacted the urban herpetofauna populations and might have been major causes of the current trend of population decline.

    With an Award of Federal Transportation Enhancement Grant, Bedminster Township plans to construct three amphibian and reptile tunnels along the River Road during winter 2015. Montclair State University will conduct a pre-construction survey to estimate herpetofauna populations utilizing the segment of River Road during spring and early summer migration. Additionally, we will conduct a post-construction survey to quantify the actual utilization of the wildlife crossing tunnels by herpetofauna populations.

    The Project Goals and Objectives aim to evaluate the use of the wildlife tunnels by herpetofauna and whether road mortality events have been reduced post-construction of the tunnels. We will:

    A turtle crossing the street
    1. Quantify the amount of herpetofauna road mortality along River Road prior to the construction of wildlife tunnels in spring and early summer 2014
    2. Quantify the herpetofauna populations utilizing the wildlife tunnels in spring and early summer 2015
    3. Estimate the percentage of obligate vernal pool breeders migrating to breeding pools across River Road
    4. Identify the return route of herpetofauna populations after breeding activities.
  • Wildlife Guardians
    Student photographing dead turtle in the road

    Wildlife need to be able to move through the landscape to find food, mates, and other resources. New Jersey’s extensive road network has been shown to impact wildlife populations in multiple ways, including direct mortality of individuals and creating complete barriers to wildlife movement. As a part of the NJ Statewide Habitat Connectivity Plan, Montclair State University in collaboration with New Jersey Department of Environmental Protection, Endangered and Non-game Species Program are currently working to enhance the state’s wildlife habitat quality by increasing the ability for wildlife to safely cross on roadways.

    Squished frog in the road

    During the Spring of 2013, volunteers and Montclair State students surveyed selected road segments in Northern New Jersey for any wildlife crossing and wildlife road mortality. The results will aid in identifying road mortality hotspots. The selected road segments will also be assessed to determine habitat characteristics essential for wildlife use and to predict other possible mortality hotspots. The goals of the project are to identify wildlife crossing hotspots in New Jersey, to prioritize those road segments for future monitoring and mitigation and to ensure the long-term persistence of wildlife species in New Jersey.

  • Bioaccumulation of Mercury in New Jersey Aquatic Ecosystems

    Mercury contamination in aquatic food webs poses a significant threat to aquatic ecosystem health. Mercury’s capability to bioaccumulate and biomagnify in aquatic ecosystems is of special concern. Therefore it is important to determine bioaccumulation and biomagnifications factors. My study will examine the mercury concentration in a simplified aquatic food web at several distinct habitats throughout New Jersey that vary in the levels of mercury contamination. The aquatic food web leading to snapping turtles (Chelydra serpentina serpentina) was chosen as the simplified representative. This species was chosen based on their ability to bioaccumulate and biomagnify mercury. Turtles are also often harvested for human consumption furthering the importance of understanding the food web dynamics occurring. Samples from each trophic level in the turtle’s food web will be collected for mercury analysis, carried out using a cold vapor spectrophotometer. The results of this study will allow us to understand if and how mercury contamination can affect and be transferred throughout the aquatic food web and varying habitats. The analysis of mercury concentration among the different trophic levels will allow us to gain further understanding of the health of the aquatic food web leading to turtle consumption by humans.

  • Human Consumption Safety of Snapping Turtles and Diamondback Terrapins
    A student on the river's edge with fishing cages

    The common snapping turtles (Chelydra serpentina serpentina) and diamondback terrapins (Malaclemys terrapin) are legally harvested throughout the State of New Jersey. Turtles are usually sold for human consumption at both local and global markets. Since turtles are long-lived omnivores, they can bioaccumulate high concentrations of pollutants in their tissues, such as mercury. Mercury is of special concern because it is the one metal that biomagnifies (due to the common organic form, methylmercury, or MeHg, found in aquatic environments, having a predilection for lipidrich tissues). High levels of mercury have been reported in turtle eggs, fat, organs, blood, shell, and muscle. This study aims to identify a quick and benign method to measure mercury contents in turtle muscles in order to assess human consumption safety of snapping turtles and diamondback terrapins. We plan to analyze mercury concentrations carapace, blood and front leg muscle of both turtle species collected from the Cape May area and the NJ Meadowlands.

    student holding a snapping turtle towards the camera

    The common snapping turtles are long-lived organisms with a delayed sexual maturity and high egg and juvenile mortalities; thus, harvesting wild snapping turtles might be unsustainable. Another component of this project is to assess the sustainability of the common snapping turtle populations in NJ. Currently, the State of New Jersey has limited regulation toward snapping turtle harvesting. Snapping turtles can be legally harvested commercially from March through October and recreationally throughout the year with the exception of nesting season (May 1st to June 15th). “Any person with a valid fishing license or those entitled to fish without a license” may take up to three snapping turtles a day either by traps or with hands, either in water or on land, either adults or juvenile, with no reporting requirement (NJDEP). In recent years, increases have been documented in numbers of snapping turtles harvested and commercial harvesting permit holders in NJ. This research project will estimate the current snapping turtle population size at selected waterbodies and assess sustainability of the populations. We will also examine the economic impacts of eliminating the current snapping turtle harvesting program in NJ.

  • Pathogen Indicator

    Coliform bacteria are pathogen indicators that originate from environmental and animal sources. Fecal coliform and more specific E. coli are often used to regulate recreational waters based on the number of colonies present. High levels of coliform can indicate high levels of other pathogenic organisms can be detrimental to the public. In this study, water samples are taken from 22 sites along the Passaic River, including tributaries: Pompton River and Indian River. Samples are tested for fecal coliform and E. coli through EPA adapted fecal coliform and total coliform filtration methods. The goals of this study are to identify high areas of bacterial contamination for future remediation and regulation.

  • Microbial Source Tracking (MST)

    Micobial Source Tracking (MST) is the use of molecular and biochemical techniques to genetically identify coliform bacteria sources. Stemming off the Pathogen Indicator Project, coliform samples are analyzed via Polymerase Chain Reaction (PCR) and real time PCR (qPCR) for animal sources. These include human, Canadian geese, dog, deer, horse, and other common farm sources. Results will be correlated to surrounding farms to identify non-point pollution sources. Areas with human sewage pipes can also be reviewed to find if sewage pipes have been compromised due to recent natural disasters or pipe leakage.

  • The Effects of Dominant Vegetative Type and Water Depth on Methane Flux Rates from a Freshwater Lake

    Methane is a greenhouse gas produced in anoxic environments of the earth’s natural and artificial wetlands and lakes. Transport of methane gas from soil to the atmosphere is mediated by the aerenchymal systems of hydrophytic vegetation. Different types of vegetation will affect methane flux rates differently due to their structure and role in oxygenating underlying substrate. This study aims to analyze the effects of dominant vegetative types found at Lake Wapalanne, Sussex County, NJ on methane flux rates in the lake’s littoral zone. Portable gas sampling chambers were used to sample Phragmites australis, Typha latifolia, and Carex spp. dominated areas. Methane can also be emitted into the atmosphere from the lake water surface through diffusion or ebullition. Water depth above the lake’s substrate has been found to play a role in these processes. Floating portable gas sampling chambers were used to sample at both shallow (0.5 m) and deep water (1.95 m) regions in the lake’s open water area.

  • Passaic River Nutrient Analysis

    This study aims to analyze nutrient concentrations in the Passaic River, NJ. 24 sites were chosen along the length of the river. Orthophosphate, ammonia, nitrate, nitrite, total kjeldahl nitrogen, and total kjeldahl phosphate were concentrations were measured using flow injection analysis.

  • The Anthropogenic Effects on Periphyton Biomass in Northern NJ

    The biotic integrity of many aquatic ecosystems has significantly declined due anthropogenic effects on these environments, such as land use and land cover. This study evaluated land use effects on periphyton growth at three different watersheds (urban, agricultural and forested) in Northern NJ. Periphyton biomass, growth rate and carrying capacity were assessed at both headwater and downstream sites of these three watersheds. Periphyton was sampled using artificial substrates during the summer and fall of 2012. The dry biomass at each site was evaluated at a weekly interval. The results indicate that the agricultural watershed provided the best growing conditions for periphyton. The dry biomass of periphyton at the downstream of the agricultural watershed was the highest 76.167mg, greater than urban 13.050mg and forested 12.300mg downstream biomass. Additionally, the highest periphyton growth rate was found at the downstream of the agricultural watershed 4.9476mg/d, greater than urban 2.900mg/d, and forested 1.236mg/d downstream growth rates. After seven weeks of exposure, periphyton growth leveled off in the agricultural watershed, reaching carrying capacities of approximately 47.368mg/m2 at the downstream and 42.105 mg/m2 at the upstream sites.

  • Ultrasonic Control of Aquatic Invasives

    Species introduction is a leading cause of biodiversity loss. All around the globe, exotic species are replacing native species and altering ecosystem they invade. One major vector of species introduction is through discharge of ship ballast water. Thousands of ships travel around the world daily and can carry up to thousands of gallons of ballast water in order to maintain stability during voyage. Sea water along with marine creatures living in the water can be ballasted from a coastal port and be transported to the next destination of call where the water may be deballasted along with organisms it carries.

    Zebra mussel is one of the many notorious invasive species introduced into North America via discharge of ship ballast water; zebra mussel invasion has caused detrimental ecological and economic impacts including the endangerment of native North American bivalves.

    For the past eight years, Dr. Wu and collaborator Dr. Junru Wu of University of Vermont have been working on the development of an ultrasonic device to control aquatic species introduction and invasion supported financially by the Sea Grant and the Great Lakes Restoration Initiative. Ultrasound is a sound wave above human audible frequency range. When directly encounter with aquatic organisms, ultrasound can form cavitation bubbles that damage/kill target organisms. The sound energy dissipates naturally as it travels in the water without causing secondary environmental impacts.

    We identified a specific ultrasonic frequency that is most effective in controlling aquatic invaders and is developing a treatment system to control unwanted aquatic invaders before ballast water is released at coastal ports. Our goal is to stop hitchhikers in ship ballast water and to preserve aquatic biodiversity for future generations.

  • Potential of Phytoremediation, Translocation of Heavy Metals
    A student looking at measuring tape in a field

    Wetland plants are capable to absorb heavy metals from contaminated soils and store them in plant tissues. This study focuses on understanding the natural processes of translocation of heavy metals in plants and aims to assess the potential of phytoremediation on contaminated soils.

    Our study site is located at Liberty State Park, Jersey City, NJ. Liberty State Park is a brownfield site caused by past industrial land use. There are over 23 acres of freshwater wetlands within the park including various habitat types of swamp, shrubs, and emergent marshes. Diverse vegetation assemblages provide an unique setting for this study assessing potential of phytoremediaton and wetland rehabilitation.

  • Greenhouse Gas Fluxes of Wetlands
    Marshlands

    This study aims to quantify greenhouse gas emissions from tidal salt marsh into the atmosphere. As recent concerns have increased to restore wetlands in order to avoid greenhouse gas emissions it is pivotal to assess the potential benefits wetlands have with regard to CO2 sequestration, and potentially obliterate the concern for methane and nitrous oxide emissions. The study site is located at the Marsh Resource Meadowlands Mitigation Bank, Charlstadt, NJ. Gas sampling chambers were installed to measure ground level diffusive methane and nitrous oxide emissions at various vegetation assemblages.

    A student standing in a marsh collecting samples

    This project is a collaborative project with Dr. Karina Schafer at Rutgers University Newark, Drs. Gil Bohrer and William Mitsch at Ohio State University, and Dr. Peter Jaffe at Princeton University. Dr. Schafer's group measure CO2 fluxes with an eddy flux tower continuously measuring 3D wind, virtual temperature, CO2, H2O and CH4 concentrations. Dr. Jaffe's lab focuses on below ground emissions and soil pore water chemistry. A research team led by Drs. Gil Bohrer and William Mitsch is conducting a comparative study on freshwater marsh at the Wilma H. Scheirmerier Olentangy River Wetland Research Park.

Past Projects

  • Amphibians Facing Challenges on Urban Landscape: Potential Impact of Human Transportation and Pathogens
  • Habitat Selection Criteria of Wood Turtles
  • A Comparison of Designations Wetland Status by NWI Maps and Army Corps Methods
  • Developing a Wetland Monitoring Program and an Invasive Management Plan for Boquet River Watershed, NY
  • Developing a Comprehensive Wetland Program for Ausable River Watershed, NY