Using a Wiki to Teach College-Level Academic Writing

APA Student

Montclair State University
Abstract

Teaching writing by employing the tools made available by Web 2.0 technology allows students to meet the changing educational requirements for writing with technology. This paper reviews the body of literature regarding a metacognitive approach for process-to-product writing and transformational learning by using a wiki to teach academic writing at the college level.

Hypertext documents, such as wikis, can be read in multiple ways because links connect individual pages through a number of logical associations or complex relations. A metacognitive approach to this three-dimensional rhetorical situation enables the writer to present clear and cohesive information in a cogent, nonlinear document. Consequently, wikis can be used to teach, clarify, reinforce, and deepen many fundamental writing skills. Hypertext research by Braaksma, Bromme, Couzijn, Fasulo, Rijlaarsdam, Stahl, Talamo, and van den Bergh (2002) and Dillon, Foltz, Levonen, Rouet, and Spiro (2009), concludes that hypertext writing facilitates metacognition, transformational learning, and collaboration. Research about collaborative writing and socially constructed knowledge by Bruffee (1984), Faigley (1986), Gerben (2009), Lunsford (2008), and Moxley (2008) supports the hypothesis that the wiki is a facile tool for teaching a metacognitive approach to process-to-product writing and transformational learning.

Keywords: collaborative writing, hypertext, metacognition, transformational learning, wiki, writing process, writing tools, writing with technology
Using a Wiki to Teach College Level Academic Writing

Present and emerging technology is redistributing the foundational tenets of composition-rhetoric theory and pedagogy onto the shifting sands of the Web 2.0 platform. As Lanham (1993) reminds us in *The Electronic Word*, the genre of writing has always been in flux. And the Web 2.0 platform testifies to the changed environment in which the written word is now also read. Interactive media has turned readers into viewers and writers into multimodal composers to such a degree that technology and text have developed a symbiotic relationship (Ellerston, 2009). Because students are accustomed to navigating web pages and crawling social networking sites, writing teachers will be working in this emerging genre with and as interactive rhetoricians. Traditional goals for teaching writing must adapt to a multitude of twenty-first century literacies and to the technologically competent students who inhabit these classrooms.

Teaching writing by employing the tools made available by Web 2.0 technology—including hypertext documents—would allow students to meet the changing educational requirements for writing with technology. According to The International Society for Technology in Education (ISTE), “technology-literate students should be able to “create media-rich presentations for other students on the appropriate and ethical use of digital tools and resources” (as cited in Gerben, 2009, p. 5) by the time they graduate from high school. They also recommend that children aged four through eight, in prekindergarten to second grade, should be able to, “in a collaborative work group, use a variety of technologies to produce a digital presentation or product in a curriculum area” (p. 5). According to ISTE, students should be able to use technology to collaborate before they can even compose academic texts.
Consequently, computers and other microchip-based technology have had a huge impact on academia and, subsequently, on writing. Students who participate in social networking sites like Facebook, MySpace, nings, and blogs are accustomed to writing in the World Wide Web environment where computers translate hypertext markup language (HTML) to display text on a viewer’s screen. Yet, most people never need to learn HTML code because the social networking sites employ a graphic user interface (GUI) that simulates word processing programs such as Microsoft Word. This simple to use GUI is referred to as a WYSIWYG (pronounced whiz-zee-whig), an acronym for What You See Is What You Get, because people can write on web pages without HTML code. A wiki is an example of an editable web page that uses a WYSIWYG GUI.

In “Interface as Exordium: The Rhetoric of Interactivity,” Teena A. M. Carnegie (2009) describes a wiki basically as “a collaborative web site that allows users to add pages and produce and edit content” (p. 169). As a multimodal document, a defining feature of a wiki is, therefore, its ability to present information in a variety of ways. Writing nodes, establishing links with semantically significant connections (e.g., hypertext), and determining structure are three key components of writing on a wiki (Bromme and Stahl, 2002b, p. 7).

In colleges and universities, writing has generally functioned in three predominant ways. First, learning to write has consisted of mastering the basics of written language instruction. Second, writing to demonstrate learning has functioned as an assessment tool within the teach/learn paradigm. And third, writing to learn continues to serve as a heuristic.

Consequently, process-to-product writing breaks down the larger writing process into subordinate sub-processes. These subprocesses are contingent upon a metacognitive approach to writing which has been informed by the hierarchical cognitive process model of Flower and
Hayes (1980), as well as the recursive writing process models theorized by Emig (1971) and Perl (1979), and more recently the cognitive flexibility theory (CFT) proposed by Rouet, Levonen, Dillon, and Spiro (2009). Teaching process-to-product writing involves teaching specificity of detail, narrative structure, organizational patterns, abstraction to higher-order thinking patterns (e.g., questions of significance), and analogical thinking (e.g., comparison to other situations). Writing hypertext helps students devise these rhetorical strategies on a three-dimensional platform.

Hypertext processing and hypertext production involves the application of written language skills as well as the development of metacognitive ability. Rouet and Levonen (2009) substantiated the long-held belief that writing is a recursive process. In accordance with their observations of students’ failure to acquire advanced knowledge, Spiro et al. (1991) claimed that “revisiting the same material, at different times, in re-arranged contexts, for different purposes, and from different conceptual perspectives is essential for attaining the goals of advanced knowledge acquisition.” (Rouet & Levonen, 2009, p. 13)

In other words, the authors believe that learning occurred in a recursive manner. Additionally, they claim that because hypertext promotes the multiple structuring of contents, it is a suitable medium to enhance the transfer of learning across situations.

Hypertext adheres to many of the same sub-processes of the writing process (e.g., Emig, 1971; Flower & Hayes, 1980; Perl, 1979). Subsequently, a recursive approach to processing and producing hypertext has demonstrated positive effects on transformational learning. This is evidenced in the Jacobson and Spiro (1995) study, in which their experimental group read a hypertext multiple times, but, each time followed a different path through the document such that the order of nodes presented the information from different perspectives. In the study, the
experimental group and the two control groups (who read the content in only one thematic order) worked with a computer-based drill-and-practice program to foster a deeper processing of the content. When tested on their knowledge about individual facts, the participants in the control groups scored significantly higher than those in the experimental group. However, the experimental group achieved significantly better results in a transfer test, in which participants had to write essays on given problems. The results of the experiment indicated that processing the same material from different perspectives may increase the acquisition of flexibly applicable knowledge. However, it examined the receptive handling of given hypertext structures. Asking the learner to \textit{actively construct} a hypertext from different thematic perspectives would correspond to the core assumption of CFT. Because of the learner’s more active role, which is in the spirit of the theory, one could even say that such a learning scenario fits CFT assumptions even better than the experimental design used by Jacobson and Spiro (1995) themselves. (Bromme \& Stahl, 2002a, p. 42)

These research conclusions suggest that incorporating hypertext writing using a wiki in college writing courses which subscribe to the long-held beliefs of recursive process writing theory, as well as cognition theory, could facilitate transformational learning while students are engaged in process-to-product writing. Furthermore, in addition to facilitating transformational learning, actively constructing hypertext can foster critical thinking through argument, textual analysis, language awareness, rhetorical strategy development, and process-to-product writing.

Writing with links gives students a deeper and more complex understanding of the course content. When students segment, combine, cluster, link, and search for global relations between ideas, they will deepen their understanding of material—in any subject (Bromme \& Stahl, 2002a,
Students develop a web of understanding that is not linear. Additionally, the writer develops a more sophisticated awareness of audience and links (Dillon, 2002, p. 68). Writing with hypertext deliberately shifts control from the writer to the reader because the writer is giving the reader control over how to read the writing. This fosters close reading, substantive writing, and critical thinking. Current research addresses the socially constructed nature of both hypertext and process writing (Faigley, 1986; Lunsford, 1991; Talamo & Fasulo, 2002). A wiki, as an authoring tool and “datagogy” (Moxley, 2008), encourages the social construction of knowledge through collaboration within a “community of learning.” Therefore, the wiki seems to be a facile tool for teaching a metacognitive approach to process-to-product writing, transformational learning, and collaboration.

Previous Investigations

Transformational Learning

Text processing, within a cognitive science context, seeks to research “how understanding is achieved through mental processes that act on text structures and reader knowledge” (Perfetti, 2009, p. 158). With regard to text production, research by Braaksma et al., conclude that experience “with hypertext writing may help students to achieve better writing plans for both linear and hypertext” (Braaksma et al., 2002, p. 35).

Metacognition

Hypertext facilitates a metacognitive approach to process-to-product writing in which text processing and production facilitates transformational learning. A study by Jacobson andSpiro (1995) entitled “Hypertext Learning Environments, Cognitive Flexibility, and the Transfer of Complex Knowledge: An Empirical Investigation” showed that the “task of constructing the hypertext from two different reader perspectives therefore involved a more intense dealing with
the hypertext structure. Furthermore, and in line with the knowledge-transforming model, the participants reflected more strongly on the semantic structures of the subject area they were dealing with” (p. 325). This focus on semantic structures yields promising implications for teaching process-to-product writing; and, their conclusion that writing hypertext can promote learning makes teaching writing with hypertext an arguable benefit. The research by Braaksma et al. (2002) showed that “analysis and ordering ideas is important in linear writing, but it appears to be more often elicited in hypertext writing” (p. 35). This research supports learning outcome goals requiring the writing of essays marked by intellectual engagement and critical reflection.

Because hypertext documents, such as wikis, can be read in multiple ways, it is not a sequential text (Foltz, 2009). Instead, links connect individual pages through a number of logical associations or complex relations. Therefore, the writer must ensure that each route provides the reader with clear and cohesive information. Hence, writing with hypertext requires an invention strategy that accounts for various linking options yet still produces a cogent document. Consequently, wikis can be used to teach, clarify, reinforce, and deepen many fundamental writing skills.
References

