Sources of Contaminants of Concern to the Newark Bay Estuary

Fourth Passaic River Symposium
Montclair State University, Montclair, NJ
June 22, 2010
Multiple Sources of Dioxin, Furans and Dioxin-like PCBs to NBE Sediments Known to Exist

- What is Dioxin?
- Sources of Dioxins
 - Where does Dioxin come from?
 - Sources in the Newark Bay Estuary
- Characterizing Sources of Dioxin
 - Do we look for Dioxin?
 - Examples of Dioxin-Contaminated Sites in the Newark Bay Estuary
- The Need for Further Investigation
What is Dioxin?

• Family (or class) of compounds: Dibenzo-p-dioxins
• Dioxin-like compounds: Furans and PCBs

• USEPA publications regarding dioxin typically address compounds in the following chemical classes:
 – polychlorinated dibenzo-p-dioxins (PCDDs or CDDs)
 – polychlorinated dibenzofurans (PCDFs or CDFs)
 – polybrominated dibenzo-dioxins (PBDDs or BDDs)
 – polybrominated dibenzofurans (PBDFs or BDFs)
 – polychlorinated biphenyls (PCBs)

• Compounds in the classes contain 210 congeners of dioxins and furans, in addition to 209 PCBs.
17 congeners and 12 PCBs have *Dioxin-like toxicity*:

<table>
<thead>
<tr>
<th>CDDs:</th>
<th>CDFs:</th>
<th>PCBs:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,3,7,8-TCDD</td>
<td>2,3,7,8-TCDF</td>
<td>PCB-77</td>
</tr>
<tr>
<td>1,2,3,7,8-PeCDD</td>
<td>1,2,3,7,8-PeCDF</td>
<td>PCB-81</td>
</tr>
<tr>
<td>1,2,3,4,7,8-HxCDD</td>
<td>2,3,4,7,8-PeCDF</td>
<td>PCB-105</td>
</tr>
<tr>
<td>1,2,3,6,7,8-HxCDD</td>
<td>1,2,3,4,7,8-HxCDF</td>
<td>PCB-114</td>
</tr>
<tr>
<td>1,2,3,7,8,9-HxCDD</td>
<td>1,2,3,6,7,8-HxCDF</td>
<td>PCB-118</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-HpCDD</td>
<td>1,2,3,7,8,9-HxCDF</td>
<td>PCB-123</td>
</tr>
<tr>
<td>OCDD</td>
<td>2,3,4,6,7,8-HxCDF</td>
<td>PCB-126</td>
</tr>
<tr>
<td></td>
<td>1,2,3,4,6,7,8-HpCDF</td>
<td>PCB-156</td>
</tr>
<tr>
<td></td>
<td>1,2,3,4,7,8,9-HpCDF</td>
<td>PCB-157</td>
</tr>
<tr>
<td></td>
<td>OCDF</td>
<td>PCB-167</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCB-169</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCB-189</td>
</tr>
</tbody>
</table>

Others Proposed: PBDD/Fs, PBBs, PBDEs, PCNs
Dioxin-like Toxicity

- Toxicity Equivalency Factors (TEFs) have been developed to compare the toxicity of each compound.

- Appear as mixtures in the environment – thus:
 \[\text{TEQ} = \text{the sum of each congener concentration multiplied by its TEF} \]

- TEQ is *the amount of 2,3,7,8-TCDD it would take to equal the combined toxic effect of all the dioxins and dioxin-like compounds found in the mixture.*

 (USEPA, 2003 DRAFT Reassessment)
Why is This Important: PR Site Example

- Multi-party Site discharges to Passaic River. Site soil contaminated with numerous hazardous substances.

- Max 2,3,7,8 TCDD concentration detected at site = 2.83 ppb.

- When detected congeners (dioxins and dioxin-like compounds) are aggregated within a sample at the site, a max TEQ of 911 ppb can be calculated.

- Therefore, the risks posed by this sample at this site are the same as a detected 2,3,7,8-TCDD concentration of 911 ppb.
Sources of Dioxins: Where does it come from?

- **Unintended byproducts** of various chemical processes, combustion, and high-temperature operations.

- USEPA and others have published extensively on the formation of dioxins and its sources to the environment:
 - Early: focused on sources of 2,3,7,8-TCDD - prior to TEFs and TEQ approach
 - Class I and II Organics and Pesticides; Class III Organics and Precursors
 - Later: categorical sources of dioxins and dioxin-like compounds
 - consistent with the TEQ approach.
 - Chemical Manufacturing and Processing Sources
 - Combustion, Incineration and Other High-Temperature Operations
Sources of Dioxins:
Class I and II Compounds

- Many former manufacturing facilities subject of EPA and NJDEP evaluation during the 1980s to assess the existence of on-site dioxin contamination.

- Focused only on 2,3,7,8-TCDD – only congener analyzed for.

- A number of these sites contaminated with 2,3,7,8-TCDD; detection limit and data quality issues.

- Most still not characterized for other dioxins, dioxin-like furans or PCBs – thus no calculation of TEQ.
Site Example: *Long Term PR Manufacturing Site*

- Site soil, groundwater and Passaic River sediments contaminated with numerous hazardous substances, including 2,3,7,8-TCDD.

- Facility manufactured Hexachlorophene from 1945 to 1984 at the Site; also manufactured own 2,4,5-TCP from 1945 – 1949.

- Site first characterized for dioxin in 1980s; contaminated with 2,3,7,8-TCDD. Other dioxins, furans and PCBs were *not characterized*.

- Site typical for this timeframe; little TEQ data exists. Others not adequately characterized, data quality issues, etc.
Sources of Dioxins:
Class III / Precursor Compounds

- Class III Organic Chemicals Related to Dioxin Formation consist of other chemicals originally purported as “having the potential, but less likelihood,” of dioxin formation.

- USEPA has also reported that certain chemicals can serve as “precursors” to dioxin. (40 CFR766)

- These sites typically not characterized in 1980s efforts

- Few of these sites have been characterized today
Site Examples: “Class III” Organic Chemicals

• **Former Manufacturing Sites, Kearny**
 - Chlorinated benzenes and naphthalene products
 - Elevated levels of 2,3,7,8-TCDD and TEQ detected on Sites
 - NJDEP identified the Dichlorobenzene distillation pot as the likely source of the dioxins on Site.

• **Former Manufacturing Site, Newark**
 - Likely Dichlorobenzene production by several prior Site owners; other potential sources due to historic Site Operations.
 - Elevated levels of 2,3,7,8-TCDD and TEQ detected on Site
 - Elevated dioxins co-located with elevated levels of Dichlorobenzenes
Site Example: Former Manufacturing Site, Newark

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>H8:3.5.4.0R</th>
</tr>
</thead>
</table>

Sum of TEQ

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Total</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. 2,3,7,8-TCDF</td>
<td>53.6</td>
<td>1.04%</td>
</tr>
<tr>
<td>B. 1,2,3,7,8-PECDF</td>
<td>4.695</td>
<td>0.09%</td>
</tr>
<tr>
<td>C. 2,3,4,7,8-PECDF</td>
<td>25.4</td>
<td>4.92%</td>
</tr>
<tr>
<td>D. 1,2,3,4,7,8-HXCD</td>
<td>400.5</td>
<td>77.59%</td>
</tr>
<tr>
<td>E. 1,2,3,6,7,8-HXCD</td>
<td>38.2</td>
<td>7.40%</td>
</tr>
<tr>
<td>F. 1,2,3,7,8,9-HXCD</td>
<td>46.9</td>
<td>0.91%</td>
</tr>
<tr>
<td>G. 2,3,4,6,7,8-HXCD</td>
<td>14.0</td>
<td>2.71%</td>
</tr>
<tr>
<td>H. 1,2,3,4,6,7,8-HPCD</td>
<td>183.3</td>
<td>3.56%</td>
</tr>
<tr>
<td>J. OCDF</td>
<td>2.449</td>
<td>0.05%</td>
</tr>
<tr>
<td>K. 2,3,7,8-TCD</td>
<td>57.6</td>
<td>1.12%</td>
</tr>
<tr>
<td>L. 1,2,3,7,8-PECDD</td>
<td>2.1</td>
<td>0.04%</td>
</tr>
<tr>
<td>M. 1,2,3,4,7,8-HXCD</td>
<td>1.91</td>
<td>0.04%</td>
</tr>
<tr>
<td>N. 1,2,3,7,8,9-HXCD</td>
<td>2.06</td>
<td>0.04%</td>
</tr>
<tr>
<td>O. 1,2,3,6,7,8-HXCD</td>
<td>6.01</td>
<td>0.12%</td>
</tr>
<tr>
<td>P. OCDD</td>
<td>0.0776</td>
<td>0.00%</td>
</tr>
<tr>
<td>Q. 1,2,3,4,6,7,8-HPCDD</td>
<td>2.12</td>
<td>0.04%</td>
</tr>
<tr>
<td>R. 1,2,3,4,6,7,8,9-HPCDF</td>
<td>18</td>
<td>0.36%</td>
</tr>
</tbody>
</table>

Grand Total: 5161.8216

100.00%
Sources of Dioxins:
Chemical Mfg. Process and High Temp Operations

Pulp/Paper mills
Dyes, Pigments, and Printing Inks
Chlorine manufacture
Chlorophenols, mono- to tetra-
Pentachlorophenol
Chlorobenzenes
Railway and Utility Runoff
ED, VC,PVC
PCBs
Tall oil-based liquid soaps
2,4-Dichlorophenoxy acetic acid
Other aliphatic chlorinated compounds
Wastewater treatment plants /
municipal sludge

Municipal Waste Incineration
Metal smelting and refining
Drum and barrel reclamation
Scrap electric wire recovery
Sewage sludge incineration
Cement kilns
Asphalt mixing plants
Petroleum refining catalyst regeneration
Crematoria
Uncontrolled PCB combustion
Fires (buildings, etc.)
Boilers / Industrial furnaces
Landfill fires
Coal combustion
Sources of Dioxins:
Sources in the Newark Bay Estuary

• More than 200 entities / PRPs identified to date in the Newark Bay Estuary whose historic and/or present day operations are associated with the formation of Dioxins.
 – 44 PRPs with Class I and II Organic Chemical or Pesticide use or production.
 – 33 PRPs with Class III Organic Chemical or Dioxin Precursor chemical use or production.
 – 142 PRPs with Chemical Manufacturing, Processes and or High-temperature Operations associated with the formation of dioxins.

• Locations range throughout Passaic River and entire Newark Bay Estuary – including all tributaries to Newark Bay. (refer to figure)
Sources of Dioxins:
Sources in the Newark Bay Estuary
Characterizing Sources of Dioxins:

Do we look for It?

- Dioxins not typically sampled and analyzed for:
 - Fear factor, cost factor, lack of enforcement

- 20 Sites identified to date as contaminated with Dioxin in the NBE, of the 200+ identified potential sources.
 - Where Dioxin and Dioxin-like congeners have been sampled for, Dioxins have *always* been detected.
 - Where only the 2,3,7,8-TCDD congener has been sampled for, it has not always been detected.
 - Most have *never been sampled* for Dioxins
Examples of Dioxin Contaminated Sites in the Newark Bay Estuary

<table>
<thead>
<tr>
<th>PRP / SITE NAME:</th>
<th>TYPE OF SOURCE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing Site, Clifton</td>
<td>Class I and II Organic Chemicals</td>
</tr>
<tr>
<td>Manufacturing Site, Newark</td>
<td>Class I and II Organic Chemicals</td>
</tr>
<tr>
<td>Formulation Site, Newark</td>
<td>Class I and II Organic Chemicals</td>
</tr>
<tr>
<td>Manufacturing Site, Newark</td>
<td>Class I and II Organic Chemicals</td>
</tr>
<tr>
<td>Manufacturing Site, Newark</td>
<td>Class I and II Organic Chemicals</td>
</tr>
<tr>
<td>Manufacturing, Linden</td>
<td>Class I and II Organic Chemicals</td>
</tr>
<tr>
<td>Manufacturing Sites, Kearny</td>
<td>Class III Organic Chemicals</td>
</tr>
<tr>
<td>Manufacturing Site, Elizabeth</td>
<td>Class III Organic Chemicals</td>
</tr>
<tr>
<td>Drum Reconditioning Site, Newark</td>
<td>Combustion, Incineration, and High Temp Source</td>
</tr>
<tr>
<td>Drum Reconditioning Site, Newark</td>
<td>Combustion, Incineration, and High Temp Source</td>
</tr>
<tr>
<td>Municipal Landfill, Kearny</td>
<td>Process Source</td>
</tr>
<tr>
<td>Municipal Landfill, Kearny</td>
<td>Process Source</td>
</tr>
</tbody>
</table>

Refer to figure for locations
Sources of Dioxins:
Sources in the Newark Bay Estuary
Conclusions: Sources of Dioxin to the Newark Bay Estuary

• Multiples sources of Dioxin to the Newark Bay Estuary exist.

• Many are not identified nor confirmed as sources.

• There is a need for further investigation and sampling of these Sites.
Acknowledgements

• Contact Info:
 Dennis P. Farley
 The Intelligence Group
 Bedminster, NJ
 Phone: (908) 901-0112
dfarley@intell-group.com

• Work reflected herein conducted on behalf of Tierra Solutions, Inc. and is part of USEPA’s public record for the LPRSA and NBSA Sites.

• Work reflected herein has been compiled from publicly available records.