Utilization of Barrier and Treatment Designs to Address Irregular Shoreline Surfaces and Control of Contaminant Migration

John H. Hull, P.E., BCEE

Fourth Passaic River Symposium
Contaminated Site Assessment, Remediation, and Redevelopment

June 22, 2010

www.aquablokinfo.com
AquaBlok Particle

dense core (e.g. aggregate)

clay (sealant) layer

hydration

time

minerals, treatment agents, organics, seeds, etc.

not to scale
AquaBlok Before Hydration

AquaBlok After Hydration and Expansion

not to scale
Self-Compacting Low Permeability Cap

1. Chemical Sequestration

2. Insulation of Benthic Community

3. Reduce Physical Mobility of Contaminated Sediments
Demonstrating Compliance in a Dynamic Environment

Split-core from Section A (2.5 yrs after placement)

- New sediment Deposits
- AquaBlok Clean Cap Layer
- Discrete boundary
- Contaminated Sediment
Higher Permeability Application

1. Uniform application of high-value, low quantity materials – match bed advective flows

2. Higher concentration of treatment materials in a PRB or Gate configuration
Delivery of In-Situ Sediment Treatment

Technologies for Reactive Gate Materials

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Treatment Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAHs and BTEX</td>
<td>PAC, EHC-O*, Oxygen Delivery, Rubber, ORGANOCLAYs**</td>
</tr>
<tr>
<td>Gasoline</td>
<td>EHC-O*, Oxygen Delivery, Nutrients, ORGANOCLAYs**</td>
</tr>
<tr>
<td>VOCs</td>
<td>Fe⁰*, EHC*, Bimetallic, PAC</td>
</tr>
<tr>
<td>Metals, Ammonia</td>
<td>Fe⁰*, EHC-M*, Organic Carbon, Zeolites, Ferric Sulfides</td>
</tr>
<tr>
<td>Acid Mine Drainage</td>
<td>EHC-M*, Organic Carbon</td>
</tr>
<tr>
<td>Nitrate</td>
<td>EHC*, Organic Carbon</td>
</tr>
</tbody>
</table>

* Adventus Group Products
** Various Manufacturers
AquaBlok+PACTM

Activated Carbon is a recognized material for absorption of a wide range of contaminants – The AquaBlok manufacturing approach can expand layer thickness with less material usage

<table>
<thead>
<tr>
<th>Material</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate</td>
<td>Nominal AASHTO #8 (1/4-3/8"), or custom-sized to meet project-specific need</td>
</tr>
<tr>
<td></td>
<td>* Limestone or non-calcareous substitute, as deemed project-appropriate</td>
</tr>
<tr>
<td>Clay</td>
<td>Bentonite (or montmorillonite derivative)</td>
</tr>
<tr>
<td></td>
<td>* Typically 5 – 10% by weight</td>
</tr>
<tr>
<td>Activated Carbon</td>
<td>Powdered – Iodine Number 800 mg/g (minimum)</td>
</tr>
<tr>
<td></td>
<td>⊗ 99% (minimum) through 100 mesh sieve</td>
</tr>
<tr>
<td></td>
<td>⊗ 95% (minimum) through 200 mesh sieve</td>
</tr>
<tr>
<td></td>
<td>⊗ 90% (minimum) through 325 mesh sieve</td>
</tr>
<tr>
<td></td>
<td>* Typically 2 – 5% by weight</td>
</tr>
<tr>
<td>Binder</td>
<td>Cellulosic polymer</td>
</tr>
<tr>
<td>Permeability</td>
<td>1 x 10^-1 to 1 x 10^-2 cm/sec</td>
</tr>
<tr>
<td>Dry Bulk Density</td>
<td>85 – 90 lbs/ft³</td>
</tr>
<tr>
<td>Moisture</td>
<td>10 – 12% (maximum)</td>
</tr>
</tbody>
</table>

Above: Intact AB+PAC 5% after perm test

Above: Flex-wall permeameter – Flow 14,774 cm/day or greater used in three runs - *Significantly in excess of the conservative 10 cm/day estimate for high advective flow conditions*
Ability to Add Treatment Material for Treatment of Flux from Contaminated Sediment

Test Column

Column Packed with AB+Gate (2.5%EHC-M*, 8%AB Clay)

* Adventus Group Product

Initial Results (Arsenic and Chromium)

AB+EHC-M Gate Material
3 months of flow

Concentration (μg/L)

Residence Time (hrs)
MGP Site – Combining Treatment and Sequestration

- **Setting/Purpose:** Canal/River (freshwater). MGP Site – Treatment barrier and low permeability barrier/cap over contaminated sediments. Site area was approximately 4,000 square feet.

- **Contaminant(s) of Concern:** Coal Tar associated with historic MGP site, including PAH (polynuclear aromatic hydrocarbons) and DNAPL (Dense Non-Aqueous Phase Liquids).

Project Status:
Completed February 2008

Placement of stone armor over AquaBlok low permeability capping material
AquaBlok Cap Design/Site Area: Multi-layer design comprised of a one inch basal layer AquaBlok+ORGANOCLAY covered with a hydrated layer (~6 inches in target thickness) of AquaBlok 3070FW. The cap was then armored with a two inch layer of AASHTO #2 stone.

Method of AquaBlok Placement: Shore-based excavator
MGP Site – Combining Treatment and Sequestration

Project Status: Completed February 2008

PROPOSED SECTION A–A

SCALE 1/4"=1'-0"
Combination Stream Bank Stabilization and Landfill Cap

- **Setting/Purpose:** Freshwater Creek – Control of Cap/Bank Erosion on Closed Landfill.

- **Contaminant(s) of Concern:** Creek bed erosion penetrated historic landfill cap and was causing a release of leachate from landfill into creek. AquaBlok, a bentonite coated aggregate sealant, was selected to provide the low permeability (in the range of 10-9 cm/sec) interface with the existing landfill cap.

![Overview of Completed Slope Repair/Stabilization with AquaBlok Landfill Cap Seal/Repair](image-url)
Combination Stream Bank Stabilization and Landfill Cap

- **AquaBlok Cap Design/Site Area:** Ohio EPA approved design that incorporated AquaBlok as primary low permeability seal for re-establishment of the certified landfill cap.

A multi-layer design was used to first re-establish the landfill cap, then to provide bank/slope protection to high flow conditions in the creek bed. The first layer utilized a 6” thick Geocell to maintain the AquaBlok capping/sealant material on the slope of the creek. This was then covered in a geofabric and a layer of stone. An articulated concrete mat was placed over the entire area to provide the final level of protection from long-term erosion to the bank. Site area was comprised of 3,000 square feet of embankment area.

- **Method of AquaBlok Placement:** Land-based excavator.

Project Status: Completed January 2008
Combination Stream Bank Stabilization and Landfill Cap

Project Status:
Completed January 2008
Trench Pipe Cap/Salt Water

- **Setting/Purpose:** Shoreline/Saltwater Pipeline cap and trench dams. Objective was to cut off site contaminant pathways during excavation and installation of combined sewer overflow pipeline.

- **Contaminant(s) of Concern:** No contaminant characterization or analysis was performed since objective was to simply isolate the pipeline trench and attempt to provide a neutral zone between the pipe and the surrounding hydrogeologic conditions.

Placement of low permeability pipe capping material
Trench Pipe Cap/Salt Water

- **AquaBlok Cap Design/Site Area:** The project engineering design called for a permeability within a range of 10-6 and 10-7 in order to best match site hydrogeologic conditions. Material blends were provided in advance and independent lab tests confirmed the saltwater blend achieved the target permeability.

- **Installation Notes:**
 - Coffer Dam approach used to isolate pipe trench from surrounding soil
 - Continuous measurement of AquaBlok performed to insure design thickness of cap
 - Water in trench is full strength sea water
 - Additional trench dams to be placed at intervals along pipeline

- **Method of AquaBlok Placement:** Shore-based Stone Slinger.

Project Status:
Completed November 2008

![Loading AquaBlok from site delivered bulk bags into aggregate truck with stone slinger](image)
Demonstration of the AquaBlok Sediment Capping Technology
National Risk Management Research Laboratory (NRML)
Office of Research + Development
U.S. EPA – Cincinnati, Ohio

Excepts from the Innovative Technology Evaluation Report:

1. STABILITY – Will it stay in place?
 “…Overall results of the AquaBlok® SITE demonstration indicate that the AquaBlok® material is highly stable, and likely more stable than traditional sand capping material even under very high bottom shear stresses.”

2. CONTAMINANT ISOLATION – Will it seal off COCs?
 “The AquaBlok® material also characteristically more impermeable, and the weight of evidence gathered suggests it is potentially more effective at controlling contaminant flux, than traditional sand capping material.”

3. RESTORATION – Will the habitat recover?
 “AquaBlok® also appears to be characterized by impacts to benthos and benthic habitat generally similar to traditional sand capping material.”
Anti-Seep Collar and Trench Dam

Cutting Off Preferential Pathways from Pipe Penetrations

Common Problem: Water seepage along pipe due to poor surrounding soils

Before: Flow of Water following piping pathway

Solution: Excavate and apply AquaBlok around pipe structures

Trench Dam application can reduce potential for piping to act as a preferential pathway
Cut-Off Wall & Seep Protection

AquaBlok anti-seep or cut-off wall

Rip-rap or articulated concrete blocks

AquaBlok anti-seep liner

Typical Problem: Water Entering or Flowing in Section of Trench

Section of Completed Cut-off Wall
Handling/Installation Factors

Handling/Installation Advantages:

• Place directly through water column

• Self-compacts on bottom – hydration fills voids to create stable erosion resistant cap layer

• Conventional construction equipment used for placement

• Easy to confirm uniformity of installation (core samples)

• Handles like sand or gravel (rugged) during installation

• Can be manufactured on-site for significant cost savings
Summary – Q&A

AquaBlok as a Thin Capping Barrier/Remediation Technology

- All Natural Clay Material Provides Low Hydraulic Conductivity for Effective Contaminant Physical and Chemical Isolation (Addresses Immediate Food Chain Issues)
- Serves as a Delivery System for a Wide Range of Treatment Materials
- Easy to Handle and Install – Provides Mechanism for Post Cap Monitoring
- Implementable in Connection with Either MNA or Dredge/Cap Strategy
- Highly Cost Effective Alternative and Less Invasive than Dredging

AquaBlok as a Geotechnical Material for Water Control and Other Applications

- Innovative Construction Material for Dam or Pond Repair and Design Applications
- Ability to Line Process Ponds without Taking Out of Service
- Simple to Handle and Use Alternative for Landfill Penetrations, Caps, and Liners
- New and Unique Well Sealant Material with Performance Superior to Coated Pellets
- Improved Performance of Conventional Flood Containment and Spill Prevention (Sand Bags)

For project specific inquiries, please submit a *Site Evaluation Form* from the AquaBlok website: www.aquablokinfo.com or call 800-688-2649