Use of Incremental Sampling for Confirmation of Excavation and Treatment of Agent Orange Contaminated Sediments in Vietnam

Kent Sorenson
Alexis Lopez
Jeff Bamer
Randa Chichakli
Pete Chenevey
Tom Boivin
Ralph Baker

October 9, 2014
Acknowledgements

This work is funded and overseen by USAID. Special thanks to:

- Joakim Parker
- Kyung Choe
- Jim Brown
- Maura Patterson
- Phuc Nguyen
Introduction

- Operation Ranch Hand – herbicides for defoliation
- Agent Orange contained dioxin as 2,3,7,8-TCDD
- Over 100,000 barrels used at Danang
- USAID lead agency for cleanup at Danang
Introduction (cont.)

- Discrete soil and sediment samples collected through January 2010
EA Summary

• Total number of samples (~89 from previous studies)
 – Soil: 34 (11 exceeding standard)
 – Sediment: 28 (11 exceeding standard)

• Volume of material requiring treatment per design
 – Soil: ~42,000 m³
 – Sediment: ~45,000 m³

• Selected Remedy: In-Pile Thermal Desorption
 – Two phases
 – Phasing allows dewatering of sediments while soil treated
Remedy

- Design excavation areas

Sen Lake and Wetland: 110 Ha

Eastern Hot Spot: 19 Ha

Drainage Ditch: 34 Ha

Former Storage Area: 17 Ha

Mixing and Loading Area: 14 Ha
Remedy (cont.)

- Two-phased implementation
- “Upland” in Phase 1
- Primarily sediments in Phase 2
Confirmation Sampling

• Reliable methodology needed to confirm concentrations for each excavation area meet standards
 – Large area
 – Significant heterogeneity
 – High cost of analytical

• Incremental Sampling Methodology (ISM)
ISM Primer

• Following 2012 ITRC guidance
• What is ISM?
 – Structured composite sampling and processing protocol
 – Reduces data variability
 – Provides a single sample for analysis with a concentration representative of the mean concentration of a “decision unit”
ISM Primer (cont.)

- Short-scale heterogeneity
 - Variability at scale of cm to a few m
 - Chance determines analytical result

"Co-located" uranium samples (mg/kg)

Former Storage Area

Former Mixing and Loading Area

Runway (under construction)

10DN957: 193 ppt
SAP646: 5610 ppt
12 m apart

10DN954: 168 ppt
10DN936: 0.396 ppt
6 m apart
ISM Primer (cont.)

- Micro-scale heterogeneity
 - Variability within sample
 - Mineral structure
- Organic carbon content
- Particle size and shape
ISM Primer (cont.)

- ISM minimizes short-scale heterogeneity
 - 30-pt composite in field

Systematic Random
ISM Primer (cont.)

- ISM minimizes micro-scale heterogeneity
 - Sample conditioning
 - Particle size reduction (sieving)
 - 30-pt composite sub-sampling (systematic random)
Application for Confirmation Sampling

- DUs based on understanding of contaminant distribution and conceptual model
- Bottom of excavation is a DU
- Each sidewall is a DU
- Subdivision of DUs to gain additional resolution
Confirmation Sampling Results to Date

- Some DUs clean after design excavation
- Some now clean after additional excavation
- Some still require additional excavation
Summary of ISM Confirmation Sampling

- ISM did NOT “dilute” high concentration hot spots
 - Revealed larger volume requiring treatment than discrete samples
 - Design estimate: 87,000 m³
 - Current estimate: 135,500 m³
 - Confirms discrete samples give many false negatives in moderately contaminated areas
Summary of ISM Confirmation Sampling

- Relative standard deviation for ISM triplicates less than for discrete samples
 - Two field duplicates during EA (discrete): 45% and 11%
 - Mean of 14 triplicate RSDs (ISM): 24%
Application of ISM to Treatment confirmation

- IPTD™ design uses an insulated, above-ground pile to heat up to 45,000 m³ of contaminated material to a minimum temperature of 335°C for 21-28 days
- Soil/sediment in pile is 6 m deep
- Must confirm material reaches average concentration of 150 ppt
Application of ISM to Treatment confirmation

- Pile divided into six, 1-m decision units vertically (DU layers)
- Coring will be used to collect samples
- Triplicate collected for one layer

30 Borings (minimum recommended)
Stay Tuned!

- Phase 1 treatment results expected in January 2015
- Phase 2 treatment will occur in 2016