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Abstract—This paper presents a new four–dimensional (4D)
lattice structured digital filter, having a minimal number of delay
elements. This filter, besides having a minimal number of delay
elements, also has an absolutely minimal state–space vector. The
new finite impulse response (FIR) digital filter is characterized
by a lattice structure having alternate delay element orientation.
Furthermore, the transfer function coefficients of the proposed
4D filter are complements of the conventional lattice filters. The
results of this paper are directly applicable to one–dimensional
(1D) lattice digital filters. 4D and two–dimensional (2D) low–
order examples are provided to show the features of the circuit
and state–space realization structures.

I. INTRODUCTION

After decades of extensive and successful research efforts

that led to appealing theoretical results and emerging applica-

tions, multidimensional (nD) systems and signal processing

have been diffused to a diverse spectrum of engineering

and mathematics areas, which include: digital filtering, image

processing, system theory, depth–velocity filtering, light filters,

3D virtual reality, robotic vision and medical imaging systems

[1]–[7].

In this publication, a new 4D lattice FIR digital filter having

alternate delay element orientation is proposed. It’s circuit

and state–space realizations are characterized by having an

absolute minimal number of delay elements, and preserving a

minimal dimension of the state–vector. Essentially, the need

to provide minimal realization arises not only out of hardware

requirements, but also because non-minimal realizations often

cause theoretical or computational difficulties due to the ab-

sence of the fundamental theorem of algebra for polynomials

with more than one–dimension [3]. Over the years, absolute

minimal circuit and state–space realizations, even for two–

dimensions (2D), have received substantial attention because

absolute minimal realizations are not always possible, except

for special cases [8]. Especially in the case of 4D circuit and

state–space, absolute minimal realizations have been proposed

for FIR, lattice, ladder, lattice–ladder, reverberator-based, bidi-

rectional, and Kelly–Lochbaum junction–based digital filters

[9]–[16].

In the new proposed FIR lattice digital filter transfer func-

tion, with alternate delays, an interesting property is conspic-

uous when it is compared with its conventional FIR lattice

filter equivalent [9]. The coefficients of the transfer functions

are compliments of each other with respect to all forward

reflection coefficients.

The rest of the paper is arranged as follows: In section

II, the related 1D two–port lattice FIR filter is given, and

in section III, 4D circuit and state–space realizations are
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Fig. 1: 1D two–port 1D lattice FIR filter with alternate delays.

Δi(i = 1, 2), are the forward reflection coefficients and z−1

is the sample time delay.

presented. In section IV, first–order 4D and 2D examples are

shown respectively. The conclusion is presented in section V.

II. 1D TWO–PORT LATTICE FIR DIGITAL FILTER

A 1D two–port first–order FIR digital filter with alternate

delays, Fig. 1, is described by the following equations:

y1(n) = x2(n − 1) + Δ2[x1(n − 1) + Δ1u1(n)],
y2(n) = x1(n − 1) + Δ1u1(n) + Δ2x2(n − 1).

Using the z transform,

y1(z) = z−1x2(z) + Δ2z
−1x1(z) + Δ1Δ2u1(z),

y2(z) = z−1x1(z) + Δ1u1(z) + Δ2z
−1x2(z).

Since, x2(z) = u1(z) + Δ1z
−1x1(z) the above equations

can be written in matrix form as:

[
y1(z)
y2(z)

]
=

[
Δ1Δ2 + z−1 Δ2z

−1 + Δ1z
−2

Δ1 + Δ2z
−1 z−1 + Δ1Δ2z

−2

] [
u1(z)
x1(z)

]
or,[

y1(z)
y2(z)

]
=

[
Δ2 z−1

1 Δ2z
−1

] [
Δ1 z−1

1 Δ1z
−1

] [
u1(z)
x1(z)

]
.

In the following section, the above 1D digital filter will be

extended to 4D and will be used to derive the state–space

equations from its circuit realization.

III. 4D CIRCUIT AND STATE–SPACE REALIZATIONS

The one–dimension lattice structure, in Fig. 1, extended to

4D is given in Figs. 2 and 3. Using the Givone–Roesser state–

space model [17], extended to 4D, the 4D generalized state–

space model {A,b, c′, d} of cyclic structure [18] is derived.

The subsequent goal is the derivation of the 4D general-

ized state–space model {A,b, c′, d} having the well known
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Fig. 2: 4D first–order lattice FIR digital filter with alternate delays.

Givone–Roesser structure, possessing the cyclic dimensional

arrangement with respect to the four independent variables:

xh
1 (i, j, k, l), xv

1(i, j, k, l), xd
1(i, j, k, l), and xt

1(i, j, k, l) [17],

[18].

To determine the state–space equations for the 4D model,

{A,b, c′, d}, the following procedure is taken:

• Use the circuit representation, depicted in Fig. 2

• Label the outputs of the delay elements

z−1
1 , z−1

2 , z−1
3 , z−1

4 that correspond to the states of

the model

• Write, by inspection, one state equation for every delay

element z−1
1 , z−1

2 , z−1
3 , z−1

4

• Rearrange the equations to have blocks of the state

variables: xh, xv , xd, xt

• Generalize the results.

The above procedure yields the generalized 4D state–space

matrix–vectors {A,b, c′} and the scalar d.

The overall 4D Givone–Roesser state–space system model

with cyclic structure, in terms of the variables xh
1 (i, j, k, l),

xv
1(i, j, k, l), xd

1(i, j, k, l), xt
1(i, j, k, l), is given below [17],

[18]:

ẋ(i, j, k, l) = Ax(i, j, k, l) + bu(i, j, k, l), (1)

y(i, j, k, l) = c′x(i, j, k, l) + du(i, j, k, l), (2)

where,

ẋ(i, j, k, l) x(i, j, k, l)
= =⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xh
1 (i + 1, j, k, l)

xv
1(i, j + 1, k, l)

xd
1(i, j, k + 1, l))

xt
1(i, j, k, l + 1)

· · ·
xh

4n(i + 1, j, k, l)
xv

4n(i, j + 1, k, l)
xd

4n(i, j, k + 1, l))
xt

4n(i, j, k, l + 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xh
1 (i, j, k, l)

xv
1(i, j, k, l)

xd
1(i, j, k, l))

xt
1(i, j, k, l)

· · ·
xh

4n(i, j, k, l)
xv

4n(i, j, k, l)
xd

4n(i, j, k, l))
xt

4n(i, j, k, l)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The matrices A,b, c′ and the scalar d of the derived 4D

state model, given in G4DL (top of the next page), have the

following dimensions respectively: 4n × 4n, 4n × 1, 1 × 4n.

Applying the 4D z–transform on (1) and (2) yields the

following 4D transfer function:

[S1]

Fig. 2

[S2]

Fig. 2

[S3]

Fig. 2

[S4n]

Fig. 2

u(i, j, k, l) y1(i, j, k, l)

y2(i, j, k, l)

Fig. 3: 4D nth–order lattice FIR digital filter with alternate

delays. Each square is a copy of the single section of Fig. 2.

T (z1, z2, z3, z4) = c′[Z − A]−1b, (3)

where, Z = z1In ⊕ z2In ⊕ z3In ⊕ z4In, with ⊕ denoting

the direct sum.

The procedure to facilitate the traversal between the state–

space models of Givone–Roesser and cyclic, both extended to

4D, is provided in [18].

IV. EXAMPLES

Salient examples, simple yet illustrative of the theoretical

concepts presented in this work, follow below:

A. 4D first–order lattice FIR filter with alternate delays

Selecting the output of the 4D first–order lattice filter given

in Fig. 2 to be y1(i, j, k, l), the corresponding 4D state–space

realization takes on the following form:

ẋ(i, j, k, l) = Ax(i, j, k, l) + bu(i, j, k, l), (4)

y(i, j, k, l) = c′x(i, j, k, l) + du(i, j, k, l), (5)

where,

ẋ(i, j, k, l) =

⎡
⎢⎢⎣

xh
1 (i + 1, j, k, l)

xv
1(i, j + 1, k, l)

xd
1(i, j, k + 1, l)

xt
1(i, j, k, l + 1)

⎤
⎥⎥⎦ ,

x(i, j, k, l) =

⎡
⎢⎢⎣

xh
1 (i, j, k, l)

xv
1(i, j, k, l)

xd
1(i, j, k, l)

xt
1(i, j, k, l)

⎤
⎥⎥⎦ ,
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A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 · · · 0
Δ1 0 0 0 0 0 · · · 0
1 Δ2 0 0 0 0 · · · 0

Δ2 1 Δ3 0 0 0 · · · 0
Δ2Δ3 Δ3 1 Δ4 0 0 · · · 0
· · · Δ3Δ4 Δ4 1 0 0 · · · 0

4n−3∏
i=2

Δi
. . .

. . .
. . .

. . .
. . .

. . .
...

4n−2∏
i=2

Δi

4n−2∏
i=3

Δi · · · · · · Δ4n−2 1 Δ4n−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

Δ1

Δ1Δ2

Δ1Δ2Δ3

· · ·
4n−3∏
i=1

Δi

4n−2∏
i=1

Δi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

c′ =

[
4n∏
i=2

Δi

4n∏
i=3

Δi

4n∏
i=4

Δi · · · Δ4n−1Δ4n Δ4n 1

]
, d =

4n∏
i=1

Δi.

G4DL: Generalized 4D state–space matrix–vectors: A,b, c′ and the scalar d, of (1) and (2).

4D LATTICE FIR TRANSFER FUNCTIONS

Variables FIR (alternate) FIR (conventional)

z−1
1 z−1

2 z−1
3 z−1

4 Δ1Δ2Δ3 Δ4

z−1
1 z−1

2 z−1
3 Δ1Δ2Δ4 Δ3

z−1
1 z−1

2 z−1
4 Δ1 Δ2Δ3Δ4

z−1
1 z−1

2 Δ1Δ3Δ4 Δ2

z−1
1 z−1

3 z−1
4 Δ3 Δ1Δ2Δ4

z−1
1 z−1

3 Δ4 Δ1Δ2Δ3

z−1
1 z−1

4 Δ2 Δ1Δ3Δ4

z−1
1 Δ2Δ3Δ4 Δ1

z−1
2 z−1

3 z−1
4 Δ2Δ3 Δ1Δ4

z−1
2 z−1

3 Δ2Δ4 Δ1Δ3

z−1
2 z−1

4 1 Δ1Δ2Δ3Δ4

z−1
2 Δ3Δ4 Δ1Δ2

z−1
3 z−1

4 Δ1Δ3 Δ2Δ4

z−1
3 Δ1Δ4 Δ2Δ3

z−1
4 Δ1Δ2 Δ3Δ4

const. Δ1Δ2Δ3Δ4 1

Table 1: 4D first–order lattice FIR transfer functions, one with

alternate delays (center column) and one conventional (right

column).

with,

A =

⎡
⎢⎢⎣

0 0 0 0
Δ1 0 0 0
1 Δ2 0 0
Δ2 1 Δ3 0

⎤
⎥⎥⎦ ,b =

⎡
⎢⎢⎣

1
1

Δ1

Δ1Δ2

⎤
⎥⎥⎦ ,

c′ =
[

Δ2Δ3Δ4 Δ3Δ4 Δ4 1
]
, d = Δ1Δ2Δ3Δ4.

Using (3), the corresponding 4D first–order lattice FIR

transfer function with alternate delays, of (4) and (5), is

presented in the Table 1 (center column).

The new proposed FIR lattice digital filter transfer function,

with alternate delays (center column), has an interesting prop-

erty as shown in Table 1 that is compared with its conventional

lattice filter (right column) equivalent [9]. The coefficients

z−1
1

Δ1

Δ1

z−1
2

Δ2

Δ2

u(i, j) y1(i, j)

y2(i, j)

Fig. 4: 2D first–order lattice FIR filter with alternate delays.

of the transfer functions are compliments of each other with

respect to all coefficients (Δ1, Δ2, Δ3, Δ4).

B. 2D first–order lattice FIR filter with alternate delays
Selecting the output of the 2D first–order lattice FIR filter

given in Fig. 4 to be y1(i, j), the corresponding 2D state–space

realization takes on the following form:

ẋ(i, j) = Ax(i, j) + bu(i, j), (6)

y(i, j) = c′x(i, j) + du(i, j), (7)

where,

ẋ(i, j) =
[

xh
1 (i + 1, j)

xv
1(i, j + 1)

]
, x(i, j) =

[
xh

1 (i, j)
xv

1(i, j)

]
,

with,

A =
[

0 0
Δ1 0

]
, b =

[
1
1

]
,

c′ =
[

Δ2 1
]
, d = Δ1Δ2.

Using (3) in the 2D sense, the corresponding 2D transfer

function T1(z−1
1 , z−1

2 ) of (6) and (7) is presented in the

following equation:

T1(z−1
1 , z−1

2 ) = Δ1z
−1
1 z−1

2 + Δ2z
−1
1 + z−1

2 + Δ1Δ2. (8)
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Fig. 5: 2D first–order lattice FIR conventional digital filter.

C. 2D first–order lattice FIR conventional filter

Selecting the output of the 2D first–order lattice FIR con-

ventional filter [9], [19], which is given in Fig. 5 to be y1(i, j),
the corresponding 2D state–space realization takes on the

following form:

ẋ(i, j) = Ax(i, j) + bu(i, j), (9)

y(i, j) = c′x(i, j) + du(i, j), (10)

where,

ẋ(i, j) =
[

xh
1 (i + 1, j)

xv
1(i, j + 1)

]
, x(i, j) =

[
xh

1 (i, j)
xv

1(i, j)

]
,

with,

A =
[

0 0
Δ1 0

]
, b =

[
1

Δ1

]
,

c′ =
[

Δ1 Δ2

]
, d = 1.

Using (3) in the 2D sense, the corresponding 2D transfer

function T2(z−1
1 , z−1

2 ) of (9) and (10) is presented in the

following equation:

T2(z−1
1 , z−1

2 ) = Δ2z
−1
1 z−1

2 + Δ1z
−1
1 + Δ1Δ2z

−1
2 + 1. (11)

Transfer functions (8) and (11) are integrated in the follow-

ing Table 2 for comparison purposes.

2D LATTICE FIR TRANSFER FUNCTIONS

Variables FIR (alternate) FIR (conventional)

z−1
1 z−1

2 Δ1 Δ2

z−1
1 Δ2 Δ1

z−1
2 1 Δ1Δ2

const. Δ1Δ2 1

Table 2: 2D first–order lattice FIR transfer functions, one with

alternate delays (center column) and one conventional (right

column).

The coefficients of the two 2D lattice FIR lattice transfer

functions, Table 2, one with alternate delays (center column)

and one conventional (right column), are compliments of each

other with respect to all coefficients (Δ1, Δ2), as in the 4D

case.

V. CONCLUSION

This paper discusses the circuit and state-space realizations

of a new lattice FIR filter with alternate delays. The proposed

4D circuit realization uses a minimal number of delays (4n).
Additionally, the dimension of the 4D state–space vector,

being 4n is also absolute minimal. The presented 4D and

2D examples show clearly the state–space filter structure and

their corresponding transfer functions. It is noted that the

coefficients of the new filter’s transfer functions, with alternate

delays, are complements of the conventional lattice filter

coefficients. The results of this paper are directly applicable

to 1D lattice FIR digital filters.
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