
ON GOD'S NUMBER(S) AND

THE RUBIK'S SLIDE EXTENSION

by James F. Johnston III

May 9, 2016

Montclair State University, Montclair, NJ

1

Abstract

In a recent article, Jones, Shelton andWeaverdyck and Alm, Gramelsp-
acher, and Rice provided two analyses of the Rubik's Slide game on a
board of dimensions 3×3. This paper extends the work of Jones, Shelton,
and Weaverdyck to a board of dimensions 4× 4. Concepts from abstract
algebra and graph theory are used to calculate the God's number of many
classes of puzzles, which is the least number of moves necessary to reach
any end con�guration from any starting con�guration of game play. It
turns out that God's number is equivalent to the diameter of a graph of
the group formed by the Rubik's Slide. Group structures are identi�ed
along with the Cayley graphs of multiple classes of puzzles and a color-
based adjacency matrix is used to explore the overall group structure of
the puzzle. A Hamiltonian cycle is identi�ed for the group with support-
ing graphs that isolate a subgroup and its cosets. A more challenging
version (hard mode) of the puzzle that is represented by a group of order
1, 625, 702, 400 is also explored with some interesting preliminary results
that will help provide further insight into the structure of this large group.
Programming code (Python) used to research this puzzle is also provided,
along with GAP group de�nitions.

2

Copyright c©2016 by James F. Johnston III. All rights reserved.

3

Acknowledgements

�A journey of a thousand miles begins with a single step.� - Laozi

When I was �rst approached by Diana Thomas, who at the time was my pro-
fessor in an abstract algebra course, little did I realize I was taking my �rst step
of what sometimes felt like a thousand mile journey. Without the assistance,
support, and time provided by both of my advisors, Diana and Michael Jones
this thesis would never have been completed. A thank you, as well, to Jonathan
Cutler, a member of my thesis defense and my �rst graduate professor at Mont-
clair State University. Most of all a big thank you to my wife Jess, without your
support and understanding, I could never have completed this journey. To my
newborn son, Xavier Orion, the world is rich with amazing things to discover
and all the more beautiful because of the mathematics that supports it; I wish
for you the desire to explore, to ask why and to ask how.

4

Contents

I Introduction 6

1 Toy Version 8

1.1 The Rules . 8
1.2 Notation . 8
1.3 Group Properties . 10
1.4 Graph Representations . 12
1.5 On God's Number . 13

II The 4× 4 Version 16

2 4× 4 Easy Mode 17

2.1 Group Structure and Naming Convention 18
2.2 Hamiltonian Cycle . 21
2.3 On God's Number and the 4× 4 Easy Mode 22
2.4 On God's Number and the Adjacency Matrix 23
2.5 Subgames of the 4× 4 Easy Mode 30

3 4× 4 Hard Mode 36

3.1 De�ning the Group . 36
3.2 On God's Number and Subgames 36
3.3 Some 4× 4 Con�gurations of Interest 38

III Summary 40

IV Works Cited 41

V Appendix A - Python Code 42

VI Appendix B - GAP Group De�nitions 66

5

Part I

Introduction

Figure 0.1: The Rubik's Slide game sold by the Rubik's company

The Rubik's Slide (http://www.rubiks.com/store/product/rubiks-slide) is a
planar game consisting of similar concepts housed in the original Rubik's Cube.
The physical di�erences between the two games is that the original Rubik's
Cube is a 3-dimensional object with transformations de�ned across faces of
the cube and restricted by its physical movements while the Rubik's Slide is a
2-dimensional object with three de�nable transformations across a single face.
Logical di�erences in game play appear as well which generate interesting math-
ematical structures that we were able to investigate.

The Rubik's Slide available for purchase exists as a two dimensional 3 × 3
electronic board made up of nine blocks. The object of the game is to move elec-
tronically colored blocks about the board by using prede�ned transformations
from an initial starting con�guration to a pre-de�ned �nal con�guration. The
addition of requiring one to reach the �nal con�guration in the minimal number
of moves generates several interesting mathematical investigations which form
the basis of our inquiry.

In the original game, there exists 3 modes of play: easy, medium, and hard.
The easy mode allows for a single coloring of up to 4 blocks with transformations
right, up, and clockwise 90◦, along with their respective inverses left, down, and
counterclockwise. The medium mode utilizes the same coloring scheme but
changes the rotation from 90◦ to 45◦. Finally, the hard mode allows for up to
two colorings for up to 4 blocks and the transformations up, right, and clockwise
45◦.

Jones, an advisor to this paper, Shelton and Weaverdyck originally published
an analysis of the game on a board of dimensions 3 × 3 and 2 × 2 using graph

6

theory and linear algebra to determine God's number for the Rubik Slide [1]. In
addition, Alm, Gramelspacher, and Rice published an analysis [2] using group
theory to �nd God's number. This thesis will be an analysis of a theoretical
extension of the game on a 4 × 4 board of sixteen blocks. The analysis is
performed for both easy and hard modes with the easy mode consisting of
16 colorings of up to 16 blocks colored with the transformations right, up, and
counterclockwise 90◦along with their respective inverses. The hard mode utilizes
the same colorings but changes the rotation from 90◦ to 30◦. The results of these
two modes are boundaries for any lesser coloring de�nitions assuming one of the
two sets of generating transformations are used.

A complete analysis of the easy mode results in the God's numbers of the
game and subgames of the puzzle along with frequency distribution lists. The
structure of the easy group is representated algebraically and graphically, a word
of 64 characters is identi�ed as a Hamiltonian cycle of the puzzle's graph, and
colored adjacency matrices are presented that highlight the visual beauty and
structure of groups.

The hard mode of the game is analyzed by looking at one and two color
games. Important game moves are identi�ed as well as some God's numbers
of the subgames. Limitations and issues related to the size of the hard group
(26 · (7!)2) are discussed.

7

1 Toy Version

Before we look at the 4×4 version we will look at a toy version of board size 2×2,
which is useful for demonstrating the rules and developing a set of mathematical
tools which extend to analyzing the larger board.

1.1 The Rules

Every game play starts with an initial con�guration of the game board, con-
sisting of a set of one or more colored squares of one or more colors. A �nal
con�guration consisting of the same number of colored squares in a di�erent
con�guration from the initial con�guration. The objective is to utilize our pre-
de�ned transformations and navigate from the initial con�guration to the �nal
con�guration. All versions of the game restrict moves to three primary trans-
formations along with three inverse transformations.

These transformations are de�ned as:

• right shift, where the color in the right position travels to the left position,
in e�ect as a torus (inverse is a left shift)

• up shift, where the color in the top position travels to the bottom position,
as well acting as a torus (inverse is a down shift)

• clockwise shift (inverse is a counterclockwise shift)

The following notation is used to represent our prede�ned transformations:
R,R−1, U, U−1, C and C−1 respectively.

Observe in Figure 1.1 for the 2 × 2 board that the transformations R and
R−1 result in exactly the same con�gurations of the board. This is also true
for the transformations U and U−1. The transformations of C and C−1 pro-
duce di�erent con�gurations where three clockwise transformations result in the
inverse transformation, C−1 = C3.

In Figure 1.2 a game is presented with an initial con�guration and a �nal
con�guration. Observe how the transformations are utilized to navigate the
board and that there are multiple paths to the desired �nal con�guration. One
of the primary focuses is to determine the least number of transformations
necessary to move from an initial con�guration to any �nal con�guration.

1.2 Notation

Instead of using colors it will be more convenient to number the board. This
allows the con�gurations and transformations on the board to be represented
by algebraic permutations. Cycle notation is used to describe every possible
con�guration and how transformations a�ect each con�guration. An identity
con�guration is represented by choosing the top row from left to right as 1
and 2, respectively, then the bottom row is represented by 3 and 4. In Fig-
ure 1.3 colors are replaced by numbers and permutation notation is used to

8

Figure 1.1: The toy version prede�ned transformations in action.

describe each prede�ned transformation. Utilizing cycle notation these trans-
formations are de�ned as R =

(
1 2

) (
3 4

)
, U =

(
1 3

) (
2 4

)
, and

C =
(
1 2 4 3

)
.

Let us take a side-by-side comparison of playing the game and performing
perumtation operations to understand more completely how to interpret our
results. The identity con�guration will be the initial con�guration, from now
referred to as I = (), and the �nal con�guration is set as

(
2 3

)
. The

�nal con�guration can be reached by the combination CR as shown in Fig-
ure 1.4. Note that the permutation operations are performed left to right for
the ease of reading the game transformations. Algebraically, it is seen that
ICR = ()

(
1 2 4 3

) (
1 2

) (
3 4

)
=

(
2 3

)
= CR. Therefore,

the con�guration CR =
(
2 3

)
implies that the value of top row position one

and bottom row position four do not change but the second and third positions
swap.

To perform a sequence of transformations, for example C(CR), it can be
performed in two speci�c orders. Either directly as C,C,R, which is (CC)R
(i.e. C2R) or as the transformation of CR on C. Using cycle notation the

9

Figure 1.2: A game with two solutions displayed.

transformations become easy to calculate.

CR =
(
2 3

)
∴ C(CR) =

(
1 2 4 3

) (
2 3

)
=

(
1 3

) (
2 4

)
To calculate (CC)R �rst calculate C2 and then apply transformation R to

this result.

C2 =
(
1 2 4 3

) (
1 2 4 3

)
=

(
1 4

) (
2 3

)
(CC)R =

(
1 4

) (
2 3

) (
1 2

) (
3 4

)
=

(
1 3

) (
2 4

)
= C2R

The con�gurations with permutation composition are associative but they
are not abelian, which is easily seen by the following comparison.

(CR)C =
(
2 3

) (
1 2 4 3

)
=

(
1 2

) (
3 4

)
6= C(CR)

There are multiple ways to describe speci�c con�gurations of the board there-
fore it is important to develop a consistent denotation. By starting with the
identity con�guration, I, it is possible to generate all other con�gurations by
only applying R and C transformations to all resulting con�gurations until
you exhaust all possible con�gurations. It is unnecessary to include the U
transformation because it is actually a composition of R and C, speci�cally
U = C2R. The toy version only has 8 possible con�gurations and we denote
them as

{
I,R,C,CR,C2, C2R,C3, C3R

}
.

1.3 Group Properties

Every version of the Rubik's Slide paired with the permutation operation is an
algebraic group because it has the four following properties:

10

Figure 1.3: A permutation perspective of the toy version.

Figure 1.4: Permutation operations compared to actual board transformations.

1. An identity con�guration, I = (), exists.

2. The transformations on the con�gurations are associative.

3. For each �nal con�guration that can be reached from some starting con�g-
uration by a sequence of transformations there exists an inverse sequence
of transformations that will return the board to the starting con�guration
. (The list of inverses for the toy version is provided below.)

4. Closure exists (i.e. the set of all possible con�gurations achieved is closed).

As found [1], the group associated with the toy version is the dihedral group of
order 8, D4. It is generated by R and C and can be writen as,〈

R,C|C4 = R2 = I,RCR−1 = C−1
〉

11

Each con�guration of the puzzle is also considered to be an element of the
group so �con�guration� and �element� are interchangeable. The inverses for
each element of the group are:

I−1 = I,R−1 = R,C−1 = C3, (CR)−1 = CR,

(C2)−1 = C2, (C2R)−1 = C2R, (C3)−1 = C, (C3R)−1 = C3R

1.4 Graph Representations

In order to gain insight, we can represent aspects of the game using graphs. Each
con�guration also can be viewed as a vertex of a graph where the transformations
that connect each vertex are viewed as edges. A useful mathematical tool is to
construct the group as a graph with directed edges. A graph representation
in this manner is a called a Cayley graph (see Fraleigh [4] pg. 70 for a more
explicit de�nition). Figure 1.5 displays two Cayley graphs of the toy version,
one only containing R and C transformations and the other containing R,U and
C transformations. Since R and C generate the group the number of vertices
remain the same in both Cayley graphs but the number of edges di�ers between
the two graphs. Consider the U transformation as a set of shortcuts that allows
one to travel from vertex to vertex with less transformations. The Cayley graph
without the U transformation contains 8 vertices and 12 edges while the Cayley
graph with the U transformation has 8 vertices and 16 edges.

Figure 1.5: The toy version displayed as two Cayley graphs.

A Hamiltonian path is a sequence of transformations that walks one through
every vertex exactly once. If a path is identi�ed such that the walk begins and

12

ends on the same vertex then this path is called a Hamiltonian cycle. Finding
a cycle is useful because that means a sequence of transformations or a word,
in graph theory terminology, has been identi�ed that guarantees a method of
solving every game given any starting position. Think about what this means,
given a random starting con�guration we have a sequence of transformations
that visits each vertex therefore no matter what �nal con�guration is chosen
the walk will eventually reach the �nal con�guration.

Hamiltonian paths can be di�cult to �nd as the number of vertices increase.
It is a signi�cant problem of interest to mathematicians and computer scientists
alike and is an NP-complete problem, meaning there exists no e�cient algorithm
to �nd such a path within polynomial time.

In Figure 1.6 a Hamiltonian cycle is displayed and is represented by the word
CCCRCCCR. Algebraically it can be shown that this word is Hamiltonian
cycle by way of calculating CCCRCCCR = C3RC3R = (C3R)(C3R)−1 = I.
Using the Cayley graphs in Figure 1.5 it is also possible to visually walk through
each vertex using the word.

Figure 1.6: A Hamiltonian cycle through the toy version.

1.5 On God's Number

If an omniscient being were to play a game, it would be played by utilizing
the most e�cient set of transformations to reach any �nal con�guration from
any initial con�guration, the least number of steps required for this omniscient
being to succeed is called God's number. In graph theory terminology, God's
number is the maximum eccentricity of any two vertices in a graph, in which
the eccentricity of a vertex is the maximum distance between itself any other
vertex in the graph. This is also referred to as the diameter of the graph.

Finding God's number in a small graph can be determined by inspecting the
Cayley graph in which all three transformations R,U and C are present. Ob-
serve that vertex I is adjacent to four vertices and non-adjacent to three vertices,
speci�cally CR,C2, and C3R. Performing one transformation it is possible to
navigate to the remaining non-adjacent vertices. Therefore the diameter of the

13

graph is found to be 2, which is the God's number of the toy version.
Another method of �nding the diameter of the graph is by recognizing a

few properties this graph holds. The toy version is a strongly 4-regular graph
(see Bollobas [3] pg.4 for more information on k -regular graphs). It is 4-regular
because every vertex is of degree four and from the viewpoint of any of the
vertices it would be impossible to identify which vertex one is located at. It is
strongly regular because every two adjacent vertices share the same number of
common vertices, 1, and every two non-adjacent vertices share the same number
of common vertices, 4. It has been proven that every strongly regular graph that
has two non-adjacent vertcies and that shares at least one common vertex has
diameter of 2.

Additionally, the toy version can be represented as a bipartite graph as
displayed in Figure 1.7. A bipartite graph is a graph that consists of two disjoint
sets of vertices where each set contains only non-adjacent vertices. Visually,
this is the easiest way to observe the diameter of this graph. Similar to the
explanation used for reading the Cayley graph to determine God's number, you
can reach any non-adjacent vertex by way of two simple transformations to any
adjacent vertex in the opposing set and then back to the non-adjacent vertex.

Figure 1.7: The toy version represented as a bipartite graph.

The �nal tool to be utilized for �nding the diameter of the graph will be
through the power of an adjacency matrix (see Babat Ch.3 for more theorems on
adjacency matrices). To build an adjacency matrix A, of the graph G, each row
and column represent a vertex vi ∈ V (G). Therefore the toy version adjacency
matrix is an 8× 8 matrix. For each entry of our matrix A, if the vertices, vi, vj
share an edge then Ai,j = 1 otherwise the entry is 0. This implies that within
one transformation these vertices are reachable from the given vertex. Since
the graph is 4-regular every row and column will contain exactly four 1's in our
initial adjacency matix.

The value of the entry An
ij where n ≥ 1 is the number of di�erent vi−vjwalks

14

of length n in G. To discover the least amount of transformations required to
visit each vertex from any other vertex you must identify the minimum degree
of the polynomial I + A + A2 + · · · + An such that each entry of the resulting
matrix has no 0 entries, the number n is the diameter/God's number of the
graph. The matrix represented by I + A + A2 + · · · + An is also known as an
n−walk. Another way of stating God's number n, is as the smallest n−walk
such that there exists no 0 entries. Figure 1.8 displays the adjacency matrices
representing both the 1 − walk and 2 − walk of the toy version, hence God's
number is 2.

Figure 1.8: The toy version 1− walk and 2− walk adjacency matrices.

15

Part II

The 4× 4 Version

Figure 1.9: A sample 4× 4 version initial con�guration.

Using the tools developed and explored on the toy version, we approach
the 4 × 4 version of the Rubik's Slide. This game is not currently manufac-
tured by the Rubik's company. A digital version is available for download at
(http://www.jimmyjohnston.org/research/rubikslide/). Because this game is a
theoretical version of a smaller game, I have adjusted the rules using the original
game rules as a guide.

3× 3 Original Game Rules

1. The easy mode consists of 1-color board pieces with a total of 4 colored
blocks per con�guration. Three transformations, right, up and clockwise
90◦ rotation, along with their respective inverses are allowed.

2. Themedium mode consists of the same coloring con�guration and trans-
formations except for the rotation changes to a clockwise 45◦ rotation and
its respective inverse.

3. The hard mode consists of 2-colored board pieces with a total of 5 colored
blocks per con�guration. Three transformations right, up and clockwise
45◦ rotation, along with their respective inverses are allowed.

4× 4 Adjusted Game Rules The adjusted rules provide a bigger picture of
the group structure. There exists only two rules for the 4× 4 version, easy and
hard.

16

1. The easy mode de�nes up to 16 unique colors and up to 16 colored blocks
using the transformations right, up, and clockwise 90◦ rotation along with
their respective inverses.

2. The hard mode consists of the same coloring con�guration and transfor-
mations except for the rotation changes to a clockwise 30◦ rotation and
its respective inverse.

2 4× 4 Easy Mode

As with the toy version, the R,U, and C are similar transformations. In Figure
2.1 the e�ect of operating on a larger game board requires updated permuta-
tions.

R =
(
1 2 3 4

) (
5 6 7 8

) (
9 10 11 12

) (
13 14 15 16

)
U =

(
1 13 9 5

) (
2 14 10 6

) (
3 15 11 7

) (
4 16 12 8

)
C =

(
1 4 16 13

) (
2 8 15 9

) (
3 12 14 5

) (
6 7 11 10

)
Recall from the the toy version the transformations R and U were inverses of
themselves and C−1 = C3. In the 4×4 easy mode the inverses of the generating
transformations are R−1 = R3, U−1 = U3, C−1 = C3.

The objective of the game remains the same, given an initial con�guration
and �nal con�guration utilize the prede�ned transformations to navigate from
the initial con�guration to your destination the �nal con�guration. Figure 2.2
demonstrates a game with two possible solutions.

The group generated by the con�gurations and their transformations is non-
abelian as well, observe that CR 6= RC, which are two unique elements in our
group.

CR =
(
1 4 16 13

) (
2 8 15 9

) (
3 12 14 5

) (
6 7 11 10

)(
1 2 3 4

) (
5 6 7 8

) (
9 10 11 12

) (
13 14 15 16

)
=

(
2 5 4 13

) (
3 9

) (
6 8 16 14

) (
7 12 15 10

)

RC =
(
1 2 3 4

) (
5 6 7 8

) (
9 10 11 12

) (
13 14 15 16

)(
1 4 16 13

) (
2 8 15 9

) (
3 12 14 5

) (
6 7 11 10

)
=

(
1 8 3 16

) (
2 12

) (
5 7 15 13

) (
6 11 14 9

)
∴ CR 6= RC

Figure 2.3 presents CR as con�gurations of the board with a subgame em-
bedded in it. Notice that even though only four boxes are colored all boxes

17

Figure 2.1: The 4× 4 easy mode transformations.

do transform. From the perspective of considering a speci�c game it is pos-
sible to discuss such a subgame while discussing the complete group and its
permutations.

2.1 Group Structure and Naming Convention

The easy mode of the 4 × 4 game has a group that contains 64 elements; as
a graph there are 64 vertices and 192 edges, a summary of di�erent board
sizes and their vertex/edge counts is presented in Figure 2.4. Using GAP soft-
ware,

〈
C,R,U |R4 = U4 = C4 = I,RCU = C

〉
is identi�ed as a series of semidi-

rect products of the cyclic group C2 with the direct product of C4 and C2,
((((C4 × C2)o C2)o C2)o C2). The naming convention chosen here to rep-
resent every vertex of our graph is CiRjUk such that i, j, k ∈ {0, 1, 2, 3}, this

18

Figure 2.2: Game demonstration with two possible solutions.

Figure 2.3: CR with a subgame embedded.

convention is not unique (i.e. CR = UC) since there are many ways to name the
vertex and this will allow us to avoid confusion when communicating movements
through the graph.

A subgroup of the 4× 4 easy mode is

H =
〈
R,U |R4 = U4 = I,RU = UR

〉
,

which is an abelian subgroup that provides a rich structure for moving about
the graph of its parent group. The left cosets of this subgroup, H, cH, c2H, c3H,
are displayed in Figure 2.5. One can travel from I → C → C2 → C3 → I by
clockwise transformations but for the remaining vertices, for example R → CR,
they are not directly connected by a clockwise transformation because the par-
ent group is not abelian. R is connected to CU in cH by way of a clockwise
transformation, RC = CU .

19

Figure 2.4: Summary of graph information for easy modes.

Lemma 1.

UR =
(
1 14 11 8

) (
2 15 12 5

) (
3 16 9 6

) (
4 13 10 7

)
Proof.

UR =
(
1 13 9 5

) (
2 14 10 6

) (
3 15 11 7

) (
4 16 12 8

)(
1 2 3 4

) (
5 6 7 8

) (
9 10 11 12

) (
13 14 15 16

)
=

(
1 14 11 8

) (
2 15 12 5

) (
3 16 9 6

) (
4 13 10 7

)

Theorem 1. The subgroup H =< R,U > generated by R and U is abelian
and of order 16.

Proof.

RU =
(
1 2 3 4

) (
5 6 7 8

) (
9 10 11 12

) (
13 14 15 16

)(
1 13 9 5

) (
2 14 10 6

) (
3 15 11 7

) (
4 16 12 8

)
=

(
1 14 11 8

) (
2 15 12 5

) (
3 16 9 6

) (
4 13 10 7

)
= UR

Since R4 = U4 = I, 〈R,U〉 =
{
RiU j : i, j = 0, 1, 2, 3

}
. All RiU j are found to

be distinct by inspecting the structure.

20

Figure 2.5: The cosets of subgroup H =< R,U >.

2.2 Hamiltonian Cycle

The bene�t of having the subgroup H =
〈
R,U |R4 = U4 = I,RU = UR

〉
struc-

ture is that it provides an easy method for identifying a Hamiltonian cycle. This
is achieved by walking through each vertex in each coset and moving from coset
to coset. Start at element I∈coset H and move directly to coset cH by way
of a clockwise transformation on I. Walk through all vertices in cH using the
word RRRURRRURRRURRR and then exit the coset by a clockwise trans-
formation into c2H. This pattern is repeated for each coset until returning to H
where a �nal iteraion of the word returns one to I. The word for the complete
Hamiltonian cycle is (CRRRURRRURRRURRR)4.

21

Lemma 2.

U3 =
(
1 5 9 13

) (
2 6 10 14

) (
3 7 11 15

) (
4 8 12 16

)
and

CU3 =
(
1 8 3 16

) (
2 12

) (
5 7 15 13

) (
6 11 14 9

)
Proof.

U3 =
[(

1 13 9 5
) (

2 14 10 6
) (

3 15 11 7
) (

4 16 12 8
)]3

=
(
1 5 9 13

) (
2 6 10 14

) (
3 7 11 15

) (
4 8 12 16

)
CU3 =

(
1 4 16 13

) (
2 8 15 9

) (
3 12 14 5

) (
6 7 11 10

)(
1 5 9 13

) (
2 6 10 14

) (
3 7 11 15

) (
4 8 12 16

)
=

(
1 8 3 16

) (
2 12

) (
5 7 15 13

) (
6 11 14 9

)

Theorem 2. The word (CRRRURRRURRRURRR)4 is a Hamiltonian
cycle of the group generated by 〈C,R,U〉.

Proof. (CRRRURRRURRRURRR)4 =
(
CR3UR3UR3UR3

)4
=

(
CR12U3

)4
because the cosets of subgroup H = 〈R,U〉 are abelian and

(
CR12U3

)4
=

(CU3)4 =
[(

1 8 3 16
) (

2 12
) (

5 7 15 13
) (

6 11 14 9
)]4

=
I, this shows us that we will end on our starting con�guration. Also observe
in Figure 2.5 that the initial C rotation places us into one of the cosets of H
and the word RRRURRRURRRURRR traverses us across each element of the
coset before invoking another C rotation moving us to the next coset. Therefore
we travel through every element of the group and end where we initially started,
hence a Hamiltonian cycle has been found.

2.3 On God's Number and the 4× 4 Easy Mode

The God's number or the diameter of the graph can easily be determined by
analyzing the coset structure of subgroup H =< R,U >. Choose vertex I as
the initial con�guration and locate the furthest vertex within coset H from I.
Through quick inspection of the coset graph in Figure 2.5 the furthest vertex
from I in coset H is R2U2. It can also be observed that the vertices coset H
are neighbors with vertices within cosets cH and c3H by either a clockwise or
counterclockwise rotation. The only coset not directly connected to H is c2H,
which is exactly two clockwise or two counterclockwise rotations away. It can

22

be deduced that the vertices that are most distant from elements in H are those
in c2H. From any coset you can reach any elements within that coset by at
most 4 transformations. Therefore the diameter of the graph or God's number
is 4 + 2 = 6.

Lemma 4. The maximum distance of any vertex y in the subgroup H
generated by < R,U >,y ∈ V (H) from I is the maximum distance from any
other vertex in H, x ∈ V (H) to y

maxx,yd(x, y) = maxyd(I, y),∀x, y ∈ V (H)

Proof. Through inspection of H this is easily observed.

Lemma 5. The distance, d(I,R2U2) = 4 and the diameter of subgroup
H = 4

diamH = maxx,yd(x, y) = maxyd(I, y) = d(I,R2U2) = 4,∀x, y ∈ V (H)

Proof. Through inspection it is found that d(I, y) < d(I,R2U2) = 4,∀y ∈
V (H). diamH = 4 by Lemma 4 and the de�nition of diameter of a graph.

Lemma 6. The maximum distance between the cosets of subgroup
H =< R,U > is 2.

Proof. The left cosets of H =< R,U > are H, cH, c2H, c3H, through in-
spection the maximum distance is 2, the distance between cosets H and c2H
and also cosets cH and c3H.

Theorem 2. The diameter of the graph, G of the 4× 4 easy verion Rubik's
Slide is 6.

Proof. The distance between cosets of subgroup H is at most 2. Each coset
have the same diameter of 4 and Lemma 4 implies that the distance between
any two vertices, vivj ∈ V (G) ≤ 6.

2.4 On God's Number and the Adjacency Matrix

It is also possible to �nd the diameter of the graph by forming an adjacency
matrix as demonstrated in the toy version. The adjacency matrix for the 4× 4
easy mode of the Rubik's Slide is a 64×64 matrix with each vertex representing
the rows and columns. Figures 2.6-10 display some of the 4 × 4 easy mode
adjacency matrices where An = I + A + A2 + · · · + An for n ∈ {1, 2, 3, 4, 6}
this will be refered to as n − walks, Table 1 provides the key describing each
vertex represented in the adjacency colored matrices. The images represent the
matrix An if an entry is the color white that implies a 0-entry in the matrix,
a color represents a non-0-entry. Colors were chosen since the colored image is

23

more graphically pleasing and we are soley interested in the existence of paths
between two vertices.

The color black represents the vertices along the diagonal which is A0 = I
these vertices are immediately reached without any transformations because
there are 0 edges necessary between a vertex and itself. In Figure 2.6 the
1 − walk includes the color blue where blue represents all vertices that share
an edge. The color teal in Figure 2.7 represents all vertices that are exactly
two hops (a hop is the number of edges traveled from some vertex C to another
vertex D) away from themselves. For the remaining �gures, the color green
represents 3 hops, yellow 4 hops, pink 5 hops, and red 6 hops.

In Figure 2.10, the 6− walk, the entries colored red, require the maximum
number of hops to reach each other, which in this puzzle is 6. For example, the
path between vertex 1 − I and vertex 43 − C2R2U2 are colored red, therefore
a minimum of 6 transformations must be used to reach the other vertex. One
such path from vertex I to vertex C2R2U2 is I → C → C2 → C2R → C2R2 →
C2R2U → C2R2U2 which you can trace in Figure 2.5. These vertices are
reached by the sequence of transformations C,C,R,R,U, U . Some additional
observations about the adjacency matrix images are that they are constructed
so that the vertices are grouped by cosets of the H =< R,U > subgroup. This
ordering shows that by the 4 − walk the nodes contained within the speci�c
cosets have all been reached and that by the 6 − walk all entries are non-zero
entries implying that every vertex has a sequence of transformations of length
6 or smaller that connects them to every other vertex in the graph, 6 is God's
number.

Table 1: Key for adjacency matrices in Figures 2.6-10

24

Figure 2.6: 1 − walk adjacency matrix organized by cosets of the subgroup
H =< R,U >

25

Figure 2.7: 2 − walk adjacency matrix organized by cosets of the subgroup
H =< R,U >

26

Figure 2.8: 3 − walk adjacency matrix organized by cosets of the subgroup
H =< R,U >

27

Figure 2.9: 4 − walk adjacency matrix organized by cosets of the subgroup
H =< R,U >

28

Figure 2.10: 6 − walk adjacency matrix organized by cosets of the subgroup
H =< R,U > with red vertices being the most distant.

29

2.5 Subgames of the 4× 4 Easy Mode

The overall analysis of the game so far has been related to a game played of
16 uniquely colored boxes. In reality the game, as produced by the Rubik's
company, is only played with 1-3 colored boxes of up to 2 colors. The full
group anaylsis provides and upper bound on our graphs diameter but it can
be signi�cantly smaller. A trivial subgame is the game involving one colored
box. There exists only one subgame of this con�guration and its diameter of 4
is obvious. Figure 2.11 displays a graph of this group.

Figure 2.11: Subgame - 1 colored box

There are 5 single color 2 box games of the associated groups. Three have
order 32, one has order 16, and the remaining one has order 8. All subgames
are actually subgroups of the 4 × 4 easy mode group therefore the orders of
each subgame will be less than or equal to 64. By Lagrange's Theorem, we
know that the order of the subgroup will divide into the order of the group.

There are also

(
16
2

)
= 120 possible ways to color a board of 16 boxes with a

single color. No subgames of equal colorings will share the same con�gurations
so the order of each subgame will sum up to 32 + 16 + 32 + 32 + 8 = 120. To
generate subgames start with an initial coloring con�guration and then apply

30

the prede�ned transformations R,U, and C onto that con�guration, continue re-
applying the transformations onto the resulting con�gurations until all possible
con�gurations have been realized. Figure 2.12 presents the Cayley graph of the
subgame of single coloring with an initial coloring con�guration of boxes 1 and
11 colored.

Figure 2.12: Subgame - 1 color 2 colored boxes

There are total of 11 three single colored subgames with a total of

(
16
3

)
=

520 possible colorings. Figure 2.13 summarizes the single colorings of 1-3 boxes
along with the orders and God's number of each subgame. The subgames of

a single coloring of 4 boxes has a total of

(
16
4

)
= 1820 possible colorings,

Figure 2.15 presents one such subgame and its associated graph. The number
of subgames grows signi�cantly for colored boxes of four through eight and a
summary of the information is presented in Figure 2.14.

31

Figure 2.13: Summary of all single-colored games where 1-3 boxes are colored.

32

Figure 2.14: Single Color Group Order Distribution Frequency for 4 × 4 Easy
Mode Rubik's Slide

Figure 2.15: Graph of single colored subgame with an intial coloring of
[1,6,11,16]

By adding a second color to our subgame the number of subgames continue

33

to grow. In Figure 2.12 a subgame of a single color of two colored boxes was
presented, compare that to Figure 2.16 where the same initial con�guration is
used but this in this instance with two di�erent colors and observe that the
number of vertices doubles from 8 to 16 by the addition of a second color. This
subgame is actually a hypercube and is represented in Figure 2.17.

Figure 2.16: Subgame - 2 colors 2 colored boxes.

Figure 2.17: Subgame - 2 colors 2 colored boxes as a hypercube.

34

To conclude the investigation of the 4× 4 easy mode, Figure 2.18 presents a
chart summarizing the number of all two color subgames of up to eight colored
boxes by their orders.

Figure 2.18: Two Color Group Order Distribution Frequency for 4 × 4 Easy
Mode Rubik's Slide

35

3 4× 4 Hard Mode

3.1 De�ning the Group

The 4 × 4 hard and easy modes share the same R and U transformations but
the C rotation becomes a 30 degree clockwise rotation, Figure 3.1 displays the
new rotation.

R =
(
1 2 3 4

) (
5 6 7 8

) (
9 10 11 12

) (
13 14 15 16

)
U =

(
1 13 9 5

) (
2 14 10 6

) (
3 15 11 7

) (
4 16 12 8

)
C =

(
1 2 3 4 8 12 16 15 14 13 9 5

) (
6 7 11 10

)
The 4 × 4 hard mode inverses of the generating transformations are R−1 =
R3, U−1 = U3, C−1 = C12. This group, as with all of the other previous groups,
is non-abelian.

Figure 3.1: The 4× 4 hard mode clockwise rotation, C.

3.2 On God's Number and Subgames

Limitations on computing have restricted advances in our insight on the God's
number / diameter of the resulting graph from the 4×4 hard mode along with its
group identi�cation through GAP. The order of this group is 1, 625, 702, 400 =
26 · (7!)2. Even with these limitations I have developed a lower bounds on
the diameter of the graph through a partial analysis on the subgames of the
4× 4 hard mode. The lower bound for the diameter of the graph generated by〈
C,R,U |R4 = U4 = C12 = I

〉
is 8. The single coloring of boxes 1,2,3,6 creates

a subgame of order 896 with a diameter of 8.
A partial list of subgame initial con�gurations of a single color, order, and

God's number is presented in Figure 3.2. All subgames where 1-5 boxes are
colored are listed along with the orders and most of their God's numbers. The
colorings of 3 subgames of 6-8 box colorings are acknowledged as existing but
no order or God's number has been identi�ed. Finally a partial list of subgame
initial con�gurations of two colors of up to 5 boxes colored, order, and God's

36

number is presented in Figure 3.3. A subgame that may provide some interesting
results in developing a sharper lower bound is the subgame of two colors where
boxes 1 and 2 are colored blue followed by boxes 3,4,5 colored red. The order
of this subgame is 18816 and the largest value encountered from this research
of any subgames presented.

Figure 3.2: Partial list of single-colored games where 1-8 boxes are colored.

37

Figure 3.3: Summary of all single-colored games where 1-3 boxes are colored.

3.3 Some 4× 4 Con�gurations of Interest

Through the study of this group, a number of notable sequences of transforma-
tions for con�gurations of interest have been found, along with some that still
remain elusive. Figure 3.4 displays examples of con�gurations of interest and
the proceeding list of facts provides some insight to the game.

38

Figure 3.4: Three con�gurations of interest.

• A 180◦ clockwise rotation is C6.

• To mirror about the diagonal, perform the following sequence of transfor-
mations (parenthesis added for readability):

(C4R3U3)(C8RU)(C4R3U3)

• The sequence of transformations for the mirror about the secondary diag-
onal is a 180◦ rotation followed by a mirror about the diagonal or a mirror
about the diagonal followed by a 180◦ rotation.

C6 · (C4R3U3)(C8RU)(C4R3U3) = (C10R3U3)(C8RU)(C4R3U3)

= (C4R3U3)(C8RU)(C4R3U3) · C6

• GAP software identi�es that the vertical mirror con�guration is an ele-
ment of the hard mode group. This sequence of transformations remains
unknown at this time.

• A short sequence of transformations for horizontal mirrgoring and 90◦ and
270◦ rotations does not exist.

• The sequence of transformations for the horizontal mirroring is a 180◦ro-
tation followed by a vertical mirroring or a vertical mirroring followed by
a 180◦ rotation.

• The sequence of transformations for the 90◦ clockwise rotation is a vertical
mirroring followed by a mirroring about the secondary diagonal.

• The sequence of transformations for the 270◦ clockwise rotation is a ver-
tical mirroring followed by a mirroring about the diagonal.

39

Part III

Summary

The Rubik's Slide is a planar game similar to the original 3-dimensional Rubik's
Cube. The physical di�erences between the two games is that the original Ru-
bik's Cube is a 3-dimensional object with transformations de�ned across faces
of the cube and restricted by its physical movements while the Rubik's Slide is a
2-dimensional object restricted to three de�nable transformations across a sin-
gle face. The Rubik's Slide available for purchase exists as a 2-dimensional 3×3
electronic board made up of nine blocks and was the subject of two recent stud-
ies, On God's Number(s) for Rubik's Slide [1] by Jones, Shelton and Weaverdyck
and Rubik's on a Torus [2] by Alm, Gramelspacher, and Rice. The object of
the game is to move about the board by using prede�ned transformations from
an initial starting con�guration to a pre-de�ned �nal con�guration.

In this study, I have investigated an extension of the Rubik's Slide game on
a board of dimensions 4 × 4. There exists two modes of play, easy and hard,
that are di�erentiated by the angle of rotation of the clockwise generating action
on the elements of this group. A number of theoretical approaches are utilized
to analyze the structure of the group generated by the extended game, to �nd
the God's number or diameter of the graph, and to analysis the subgames or
subgroups of this theoretical version. This investigation has yielded that the
God's number in easy mode is 6. It turns out that the God's number for the
4 × 4 board is also the maximum value for any of the subgames that can be
played on this board with those transformations. Unfortunately, the God's
number in hard mode for the group of order 1, 625, 702, 400 still eludes us. New
mathematical tools will be required to calculate God's number of groups with
larger orders. Increasing computational speeds and increasing the computing
data size limitations help to provide insight however, due to calculation size,
developing more theoretical strategies will be key to advancing the research.
For example, whether we can extract local information about subgroups that
provide global information about the entire group is a question that should be
drawn out using theory. A list of known God's numbers for each general version
of the game is provided in 3.5.

Figure 3.5: Summary of known order and God's numbers

40

Part IV

Works Cited

1. Alm, J., Gramelspacher, M., & Rice, T. (2013). Rubik's on the torus.
The American Mathematical Monthly, 120(2), 150-160. Retrieved , from
http://www.jstor.org/stable/10.4169/amer.math.monthly.120.02.150

2. Jones, M.A., Shelton, B., & Weaverdyck, M. (2014, Sept.) On God's
Number(s) for Rubik's Slide. The College of Mathematics Journal, Vol.
45(04), 267-275.

3. Bollobas, B. (1998) Modern graph theory. New York: Springer.

4. Fraleigh, J., & Katz, V. (2003) A �rst course in abstract algebra (7th ed.).
Boston: Addison-Wesley.

Resources

• All source code, adjacency tables, game software, and related �les are
stored at http://www.jimmyjohnston.org/research/rubikslide.

• Screen captured simulations of the current software is available for preview
at http://www.youtube.com/watch?v=GvMrn88DgEE.

41

Part V

Appendix A - Python Code

The code provided below is used to calculate paths to vertices, whether two
vertices are adjacent, the God's number of games, the number of games and the
orders of those games. It also creates a space where you can perform permuta-
tion operations using sympy. Copy the code to a text editor and save as .py.
Run code using a Python interpreter.

import math , p i ck l e , random , time , numpy
from sympy . combinator i c s import ∗
from sympy . matr i ce s import ∗
from sympy . combinator i c s . perm_groups import

PermutationGroup
from sympy . combinator i c s . named_groups import ∗
from operator import i t emge t t e r

#DESCRIPTION RS4x4 Exp lo re r
#AUTHOR Jim Johnston
#EMAIL jimmy . johnston@gmai l . com
#LAST MODIFIED 2016−04−26
#LICENSING GNU GPLv3
#DEPENDENCY ve r s i on >= Python 3 .0 , sympy needs to be

i n s t a l l e d
#NOTES The f un c t i o n s be low are de s i gned f o r the a n a l y s i s

o f t h e Rubik ' s S l i d e 4x4 Easy and Hard modes . Both
modes are a l g e b r a i c groups where the easy mode i s
g enera t ed by the e l ement s <R,U,C90> and the hard mode
by <R,U,C>. Examples are prov i ded a t t he bottom o f

the f i l e on usage . Many f un c t i o n s are f un c t i o n s
dependent on o t h e r s so s t a r t i n g wi th the examples i s
recommended .

#game r u l e s d e f i n e d us ing sympy permuta t ions
I = Permutation (16)
C90 = Permutation (1 , 4 , 16 , 13) (2 , 8 , 15 , 9) (3 , 12 , 14 , 5)

(6 , 7 , 11 , 10)
C = Permutation (1 , 2 , 3 , 4 , 8 , 12 , 16 , 15 , 14 , 13 , 9 , 5) (6 , 7 , 11 , 10)
R = Permutation (1 , 2 , 3 , 4) (5 , 6 , 7 , 8) (9 , 10 ,11 ,12)

(13 ,14 ,15 ,16)
U = Permutation (1 , 13 , 9 , 5) (2 , 14 , 10 , 6) (3 , 15 , 11 , 7)

(4 , 16 , 12 , 8)

T = Permutation (1 , 2)

42

def s h i f t (e , v) :
#s f i n d s index o f e lement e in l i s t v r e t u rn s nex t

e lement
return (v [(v . index (e)+1)%4])

def s h i f t i n v (e , v) :
#f i n d s index o f e lement e in l i s t v r e t u rn s p r e v i ou s

e lement
return (v [(v . index (e)−1)%4])

def r i g h t (e) :
#r i g h t s h i f t u s ing l i s t s
v1 = [1 , 2 , 3 , 4]
v2 = [5 , 6 , 7 , 8]
v3 = [9 , 10 , 11 , 12]
v4 = [13 , 14 , 15 , 16]
new_e = [] #r e s u l t i n g c on f i g u r a t i o n re tu rn l i s t
f o r i in e :

i f i in v1 :
new_e . append (s h i f t (i , v1))

e l i f i in v2 :
new_e . append (s h i f t (i , v2))

e l i f i in v3 :
new_e . append (s h i f t (i , v3))

e l i f i in v4 :
new_e . append (s h i f t (i , v4))

return (new_e)

def up(e) :
#up s h i f t u s ing l i s t s
v1 = [1 , 13 , 9 , 5]
v2 = [2 , 14 , 10 , 6]
v3 = [3 , 15 , 11 , 7]
v4 = [4 , 16 , 12 , 8]
new_e = []
f o r i in e :

i f i in v1 :
new_e . append (s h i f t (i , v1))

e l i f i in v2 :
new_e . append (s h i f t (i , v2))

e l i f i in v3 :
new_e . append (s h i f t (i , v3))

e l i f i in v4 :
new_e . append (s h i f t (i , v4))

return (new_e)

43

def c_easy (e) :
#c l o c kw i s e 90 degree r o t a t i o n us ing l i s t s
v1 = [1 , 4 , 16 , 13]
v2 = [2 , 8 , 15 , 9]
v3 = [3 , 12 , 14 , 5]
v4 = [6 , 7 , 11 , 10]
#to hand le mu l t i p l e e l ement s run through a loop t h a t

computes each p i e c e i n d i v i d u a l l y
new_e = []
f o r i in e :

i f i in v1 :
new_e . append (s h i f t (i , v1))

e l i f i in v2 :
new_e . append (s h i f t (i , v2))

e l i f i in v3 :
new_e . append (s h i f t (i , v3))

e l i f i in v4 :
new_e . append (s h i f t (i , v4))

return (new_e)

def c (e) :
#c l o c kw i s e r o t a t i o n us ing l i s t s
v1 = [1 , 2 , 3 , 4 , 8 , 12 , 16 , 15 , 14 , 13 , 9 , 5]
v2 = [6 , 7 , 11 , 10]
#to hand le mu l t i p l e e l ement s run through a loop t h a t

computes each p i e c e i n d i v i d u a l l y
new_e = []
f o r i in e :

i f i in v1 :
new_e . append (v1 [(v1 . index (i)+1)%12])

e l i f i in v2 :
new_e . append (s h i f t (i , v2))

return (new_e)

def r i g h t i nv (e) :
#r i g h t i n v e r s e (l e f t) s h i f t u s ing l i s t s
v1 = [1 , 2 , 3 , 4]
v2 = [5 , 6 , 7 , 8]
v3 = [9 , 10 , 11 , 12]
v4 = [13 , 14 , 15 , 16]
new_e = []
f o r i in e :

i f i in v1 :
new_e . append (s h i f t i n v (i , v1))

e l i f i in v2 :

44

new_e . append (s h i f t i n v (i , v2))
e l i f i in v3 :
new_e . append (s h i f t i n v (i , v3))

e l i f i in v4 :
new_e . append (s h i f t i n v (i , v4))

return (new_e)

def upinv (e) :
#up i n v e r s e (down) s h i f t u s ing l i s t s
v1 = [1 , 13 , 9 , 5]
v2 = [2 , 14 , 10 , 6]
v3 = [3 , 15 , 11 , 7]
v4 = [4 , 16 , 12 , 8]
new_e = []
f o r i in e :

i f i in v1 :
new_e . append (s h i f t i n v (i , v1))

e l i f i in v2 :
new_e . append (s h i f t i n v (i , v2))

e l i f i in v3 :
new_e . append (s h i f t i n v (i , v3))

e l i f i in v4 :
new_e . append (s h i f t i n v (i , v4))

return (new_e)

def c_easyinv (e) :
#c l o c kw i s e 90 degree i n v e r s e (c oun t e r c l o c kw i s e)

r o t a t i o n us ing l i s t s
v1 = [1 , 4 , 16 , 13]
v2 = [2 , 8 , 15 , 9]
v3 = [3 , 12 , 14 , 5]
v4 = [6 , 7 , 11 , 10]
#to hand le mu l t i p l e e l ement s run through a loop t h a t

computes each p i e c e i n d i v i d u a l l y
new_e = []
f o r i in e :

i f i in v1 :
new_e . append (s h i f t i n v (i , v1))

e l i f i in v2 :
new_e . append (s h i f t i n v (i , v2))

e l i f i in v3 :
new_e . append (s h i f t i n v (i , v3))

e l i f i in v4 :
new_e . append (s h i f t i n v (i , v4))

return (new_e)

45

def c_inv (e) :
#c l o c kw i s e i n v e r s e (c oun t e r c l o c kw i s e) r o t a t i o n us ing

l i s t s
v1 = [1 , 2 , 3 , 4 , 8 , 12 , 16 , 15 , 14 , 13 , 9 , 5]
v2 = [6 , 7 , 11 , 10]
#to hand le mu l t i p l e e l ement s run through a loop t h a t

computes each p i e c e i n d i v i d u a l l y
new_e = []
f o r i in e :

i f i in v1 :
new_e . append (v1 [(v1 . index (i)−1)%12])

e l i f i in v2 :
new_e . append (s h i f t i n v (i , v2))

return (new_e)

def one_color_game (mixed_l ist) :
#Determines the number o f b l o c k s b e ing p l ayed f o r

s o r t i n g purposes
i f l en (mixed_l ist [0]) ==1:

gamekey = i t emge t t e r (0)
e l i f l en (mixed_l ist [0]) ==2:

gamekey = i t emge t t e r (0 , 1)
e l i f l en (mixed_l ist [0]) ==3:

gamekey = i t emge t t e r (0 , 1 , 2)
e l i f l en (mixed_l ist [0]) ==4:

gamekey = i t emge t t e r (0 , 1 , 2 , 3)
e l i f l en (mixed_l ist [0]) ==5:

gamekey = i t emge t t e r (0 , 1 , 2 , 3 , 4)
e l i f l en (mixed_l ist [0]) ==6:

gamekey = i t emge t t e r (0 , 1 , 2 , 3 , 4 , 5)
e l i f l en (mixed_l ist [0]) ==7:

gamekey = i t emge t t e r (0 , 1 , 2 , 3 , 4 , 5 , 6)
e l i f l en (mixed_l ist [0]) ==8:

gamekey = i t emge t t e r (0 , 1 , 2 , 3 , 4 , 5 , 6 , 7)
#f i r s t f o r l oop s o r t s each i n d i v i d u a l p o s i t i on , ex .

[1 , 3 , 2] >> [1 , 2 , 3]
#second f o r l oop pu t s on ly unique p o s i t i o n s i n t o l i s t

and then r e t u rn s s o r t e d l i s t
#reasons beh ind second loop i s t h a t w i th s i n g l e c o l o r

[1 , 3 , 2] and [1 , 2 , 3] are the same .
new_mixed_list = []
f o r element in mixed_l ist :

e lement . s o r t ()
f o r element in mixed_l ist :

i f element not in new_mixed_list :
new_mixed_list . append (element)

46

return (sor ted (new_mixed_list , key=gamekey))

def sor t_e lement_l i s t (e l ement_l i s t) :
#used by permuta t ions2 f un c t i on
s o r t e d l i s t = []
f o r element in e l ement_l i s t :

newelement = []
f o r subelement in element :

newelement . append (sor ted (subelement))
i f newelement not in s o r t e d l i s t :

s o r t e d l i s t . append (newelement)
return (s o r t e d l i s t)

def permutations (element , moves) :
#purpose : used to f i n d a l l permuta t ions o f a g i v en

i n i t i a l s i n g l e c o l o r c o n f i g u r a t i o n
#element i s a l i s t o f c o l o r e d boxes , moves are a l i s t

o f t r an s f o rma t i on s d e f i n e d by l i s t s
l ist_of_elements_in_subgame = [] #w i l l con ta in a l l

e l ement s in s p e c i f i c subgame
current_element_locat ion = [element] #once empty

imp l i e s c o s e t has been comple ted
whi le (current_element_locat ion) : #wh i l e t h e r e are

e l ement s in s e t
element = current_element_locat ion [−1] #use the l a s t

e lement in s e t
current_element_locat ion . pop () #remove e lement be ing

used from s e t
i f element not in l ist_of_elements_in_subgame : #i f

e lement not in r e s u l t l i s t then do
l ist_of_elements_in_subgame . append (element) #add

e lement to r e s u l t i n g l i s t
f o r move in moves :

new_element = move(element) #tra c k each nex t
p o s i t i o n g i v en a l l moves

i f new_element not in current_element_locat ion :
i f new_element not in

l ist_of_elements_in_subgame :
current_element_locat ion . append (new_element)

#as long as t h i s e lement e x i s t s no where
in e i t h e r s e t then i t i s a new e lement to
e x p l o r e nex t s t e p s

return (one_color_game (list_of_elements_in_subgame))

47

def permutat ions2 (element , moves) :
#purpose : g ene r a t e s a l l c o n f i g u r a t i o n s o f a s i n g l e

mul t i−co l o r e d game g i v en an i n i t i a l c o n f i g u r a t i o n (
l i s t) and t r an s f o rma t i on s

l i s t_of_elements_in_coset = [] #w i l l con ta in a l l
e l ement s in s p e c i f i c c o s e t

current_element_locat ion = [element] #once empty
imp l i e s c o s e t has been comple ted

co lo r count = l en (element)
whi le (current_element_locat ion) : #wh i l e t h e r e are

e l ement s in s e t
element = current_element_locat ion [−1] #use the l a s t

e lement in s e t
current_element_locat ion . pop () #remove e lement be ing

used from s e t
i f element not in l i s t_of_elements_in_coset : #i f

e lement not in r e s u l t l i s t then do
l i s t_of_elements_in_coset . append (element) #add

e lement to r e s u l t i n g l i s t
f o r move in moves :

new_element = []
f o r i in range (co l o r count) : #c r i t i c a l p i e c e to

hand le mul t i−c o l o r p o s i t i o n s
new_element . append (move(element [i]))

#new_element = [move (e lement [0]) ,move (e lement
[1])] #t r a c k each nex t p o s i t i o n g i v en a l l
moves

i f new_element not in current_element_locat ion :
i f new_element not in

l i s t_of_elements_in_coset :
current_element_locat ion . append (new_element)

#as long as t h i s e lement e x i s t s no where
in e i t h e r s e t then i t i s a new e lement to
e x p l o r e nex t s t e p s

return (sor t_e lement_l i s t (l i s t_of_elements_in_coset))

def i sAdjacent (i , j , moves) :
#purpose : de termine boo l ean t r u t h va l u e o f whether two

e l ement s are ad jacent , suppor t mul t i−c o l o r
c o n f i g u r a t i o n s

#method : t a k e e lement i , c a l c u l a t e i t s n e i g h bo r s by
app l y i n g t r an s f o rma t i on s to i t a f t e r each
t rans f o rma t i on check to see i f e lement j i s in
r e s u l t i f i t i s no need to con t inue per forming
t r an s f o rma t i on s

#assumpt ions : i t i s assumed t h a t bo th i and j are

48

wr i t t e n as a s o r t e d l i s t
f o r move in moves :

new_element = []
f o r sub in i :

new_element . append (sor ted (move(sub)))
i f j==new_element :
return (True)

return (Fa l se)

def adjacencyMatrix (e l emen t l i s t , moves) :
#purpose : g i v en a l i s t o f e l ement s and t r an s f o rma t i on s

on them re tu rn an ad jacency matr ix in the form o f
a sympy matr ix o b j e c t

bui ld_l i s t_for_matr ix = []
f o r e lementI in e l emen t l i s t :
f o r elementJ in e l emen t l i s t :

i f i sAdjacent (elementI , elementJ , moves) :
bu i ld_l i s t_for_matr ix . append (1)
#pr i n t (e lementI , e lementJ , 1)

e l s e :
bu i ld_l i s t_for_matr ix . append (0)
#pr i n t (e lementI , e lementJ , 0)

M = Matrix (l en (e l emen t l i s t) , l en (e l emen t l i s t) ,
bu i ld_l i s t_for_matr ix)

return (M)

def godsnumber (c on f i gu ra t i on s , moves , fname=" de fau l t−
adjacency−matrix " , l im i t =10, verbose=False) :

#purpose : c a l c u l a t e t he god ' s number / diameter o f a
graph

#vars : c o n f i g u r a t i o n s i s t he game e l ement s w r i t t e n as
a l i s t , MOVES are a l i s t o f g en e r a t i n g permutat ions
,

#vars : FNAME i s a s t r i n g f i l ename , VERSION 1 or 2
r e p r e s e n t s how many c o l o r s are in game , LIMIT i s a
computa t iona l boundary

#l im i t a t i o n s : c u r r e n t l y works f o r on ly one or two
co l o r e d games

#l a s t updated : 2015−12−05
pr in t ("Computing God ' s Number o f "+s t r (c on f i g u r a t i o n s

[0]))
I = eye (l en (c on f i g u r a t i o n s)) #cr e a t e s t he i d e n t i t y

matr ix
i f a l l (i s i n s t a n c e (X, l i s t) f o r X in c on f i g u r a t i o n s

[0]) :
#i f v e r s i on==2: #c r e a t e s ad jacency matr ix

49

A = adjacencyMatrix2 (con f i gu r a t i on s , moves) #mu l t i p l e
c o l o r games

e l s e :
A = adjacencyMatrix (c on f i gu r a t i on s , moves) #s i n g l e

c o l o r games
power = 1
r e s u l t = I #0−walk
whi le (power<l im i t) : #s e t t i n g a computa t iona l boundary

r e s u l t+=A∗∗power #n−walk or more app rop r i a t e power−
walk haha

i f power==1: #t h i s w r i t e s you i n i t i a l ad jacency
matr ix to d i s k

f = open (fname+s t r (power)+" . txt " , "w")
f . wr i t e (s t r (A))
f . c l o s e ()

i f 0 not in r e s u l t : #God ' s number has been
c a l c u l a t e d , w r i t e r e s u l t i n g n−walk to d i s k

f = open (fname+s t r (power)+" . txt " , "w")
f . wr i t e (s t r (r e s u l t))
f . c l o s e ()
pr in t ("God ' s Number i s "+s t r (power)) i f verbose

e l s e None
return (power)

pr in t (" nothing yet , j u s t checked "+s t r (power)) i f

verbose e l s e None
power+=1

pr in t ("we have reached the computat ional l im i t o f "+
s t r (l im i t)+" s e t by you") i f verbose e l s e None

return (−1)

def gameOrder (i n i t i a l c o n f i g , generator s , verbose=False) :
#purpose : c a l c u l a t e s t he order o f t he c o s e t g i v en an

i n i t i a l c o n f i g u r a t i o n and g ene ra t o r s
#vars : i n i t i a l c o n f i g must be a l i s t such as [1 , 2 , 3]

where the b l o c k s 1 ,2 ,3 are co l o r e d a s i n g l e c o l o r
#vars : or a l i s t o f l i s t s [[1 , 2] , [3]] where b l o c k s 1 ,2

are c o l o r e d a s i n g l e co lo r , and b l o c k 3 i s c o l o r e d
another c o l o r

#vars : g ene ra t o r s i s a l i s t o f permuta t ions d e f i n e d as
the f un c t i o n s easymoves =[r i g h t , up , c_easy , r i g h t i n v

, upinv , c_easyinv]
#vars : or hardmoves = [r i g h t , up , c , r i g h t i n v , upinv , c_inv

] , you can choose o t h e r g ene ra t o r s by mixing and
matching the p r e d e f i n e d t r an s f o rma t i on s or you can
wr i t e your own f un c t i on to d e f i n e a s e t o f
permutat ions , t he one requ i rement i s t h a t t he

50

permuta t ions are d e f i n e d as l i s t s , not as a sympy
permutat ion

pr in t (" Ca l cu l a t ing order o f game with i n i t i a l
c on f i gu r a t i on o f "+s t r (i n i t i a l c o n f i g))

i f a l l (i s i n s t a n c e (X, l i s t) f o r X in i n i t i a l c o n f i g) :
order = l en (permutat ions2 (i n i t i a l c o n f i g , g ene ra to r s))
pr in t ("Game order o f "+s t r (i n i t i a l c o n f i g)+" i s "+

s t r (order)) i f verbose e l s e None
return (order)

e l i f any (i s i n s t a n c e (X, l i s t) f o r X in i n i t i a l c o n f i g)
:

return ("Your i n i t i a l c on f i gu r a t i on i s not proper ly
formatted . \ nMust be a l i s t o f i n t e g e r s or a l i s t
o f l i s t s o f i n t e g e r s . ")

e l s e :
o rder = l en (permutat ions (i n i t i a l c o n f i g , g ene ra to r s))
pr in t ("Game order o f "+s t r (i n i t i a l c o n f i g)+" i s "+

s t r (order)) i f verbose e l s e None
return (order)

def searchpath (elements , r o t a t i on=C) :
#This f un c t i on p r i n t s a sequence o f t r an s f o rma t i on s o f

t he form (C^a ∗ R^b ∗U^c) (C^d ∗ R^e ∗U^ f) (C^g ∗ R^
h ∗U^ i) (C^ j ∗ R^k ∗U^m) g i v en a g ene r a t i n g s e t o f
t r an s f o rma t i on s and a LIST o f e l ement s you are
s ea r ch in g f o r .

#De fau l t s e t t i n g i s hard mode pass C90 as second
v a r i a b l e when c a l l i n g to s e t as easy mode .

t rack = 0
f o r a in range (0 , 12) :
f o r b in range (0 , 4) :
f o r c in range (0 , 4) :
f o r d in range (0 , 12) :
f o r e in range (0 , 4) :
f o r f in range (0 , 4) :
f o r g in range (0 , 12) :
f o r h in range (0 , 4) :
f o r i in range (0 , 4) :
f o r j in range (0 , 12) :
f o r k in range (0 , 4) :
f o r m in range (0 , 4) :

contender = (r o t a t i on ∗∗a) ∗(R∗∗b
) ∗(U∗∗ c) ∗(r o t a t i on ∗∗d) ∗(R∗∗ e
) ∗(U∗∗ f) ∗(r o t a t i on ∗∗g) ∗(R∗∗h
) ∗(U∗∗ i) ∗(r o t a t i on ∗∗ j) ∗(R∗∗k
) ∗(U∗∗m)

51

i f contender in e lements :
pr in t (contender , " >> " , a , b , c

, d , e , f , g , h , i , j , k ,m)
e lements . remove (contender)
i f l en (e lements)==0:
return (1 , t rack)

t rack+=1
return (0 , t rack)

##
#This nex t f un c t i on g ame l i s t i s l e n g t h y t h e r e are no

f un c t i o n s t h a t f o l l o w .
#Immediate ly f o l l o w i n g g ame l i s t i s t h e examples s e c t i o n
##

def game l i s t (n , moves , verbose=False) :
#purpose : g ene r a t e s a l l unique subgames o f a d e f i n e d

game
#vars : moves the permuta t ions t h a t d e f i n e the group

a long wi th t h e i r i n v e r s e s
#l im i t a t i o n s : c u r r e n t l y works f o r one co l o r e d games

on ly
#note s : t h i s f un c t i on i s n e c e s s a r i l y long , i n s t e a d o f

condens ing the code i t i s pu rpo s e l y l e f t l ong f o r
r e a d a b i l i t y and under s tand ing

games = []
i f n==2:
#2 b l o c k s
pr in t ("Analyzing 2 co l o r ed b locks games")
f o r i in range (2 , 17) :

i n i t i a l c o n f i g = [1 , i]
game_exists = Fal se
f o r game in games :

i f i n i t i a l c o n f i g in game :
game_exists = True
break

i f not game_exists :
contender = permutat ions (i n i t i a l c o n f i g , moves)
contender . s o r t ()
games . append (contender)
pr in t (s t r (contender [0])+s t r (l en (contender)))

i f verbose e l s e None
pr in t (" completed")

e l i f n==3:
#3 b l o c k s
pr in t ("Analyzing 3 co l o r ed b locks games")

52

f o r i in range (2 , 17) :
f o r j in range (i +1 ,17) :

i n i t i a l c o n f i g = [1 , i , j]
game_exists = Fal se
f o r game in games :

i f i n i t i a l c o n f i g in game :
game_exists = True
break

i f not game_exists :
contender = permutat ions (i n i t i a l c o n f i g , moves)
contender . s o r t ()
games . append (contender)
pr in t (s t r (contender [0])+s t r (l en (contender))

) i f verbose e l s e None
pr in t (" completed")

e l i f n==4:
#4 b l o c k s
pr in t ("Analyzing 4 co l o r ed b locks games")
f o r i in range (2 , 17) :
f o r j in range (i +1 ,17) :
f o r k in range (j +1 ,17) :

i n i t i a l c o n f i g = [1 , i , j , k]
game_exists = Fal se
f o r game in games :

i f i n i t i a l c o n f i g in game :
game_exists = True
break

i f not game_exists :
contender = permutat ions (i n i t i a l c o n f i g , moves)
contender . s o r t ()
games . append (contender)
pr in t (s t r (contender [0])+s t r (l en (contender))

) i f verbose e l s e None
pr in t (" completed")

e l i f n==5:
#5 b l o c k s
pr in t ("Analyzing 5 co l o r ed b locks games")
f o r i in range (2 , 17) :
f o r j in range (i +1 ,17) :
f o r k in range (j +1 ,17) :
f o r m in range (k+1 ,17) :

i f i != j and j !=k and k!=m and m!= i and m!= j
and k!= i :

i n i t i a l c o n f i g = [1 , i , j , k ,m]
game_exists = Fal se
f o r game in games :

53

i f i n i t i a l c o n f i g in game :
game_exists = True
break

i f not game_exists :
contender = permutat ions (i n i t i a l c o n f i g ,

moves)
contender . s o r t ()
games . append (contender)
pr in t (s t r (contender [0])+s t r (l en (

contender))) i f verbose e l s e None
pr in t (" completed")

e l i f n==6:
#6 b l o c k s
pr in t ("Analyzing 6 co l o r ed b locks games")
f o r i in range (2 , 17) :
f o r j in range (i +1 ,17) :
f o r k in range (j +1 ,17) :
f o r m in range (k+1 ,17) :
f o r n in range (m+1 ,17) :

i n i t i a l c o n f i g = [1 , i , j , k ,m, n]
game_exists = Fal se
f o r game in games :

i f i n i t i a l c o n f i g in game :
game_exists = True
break

i f not game_exists :
contender = permutat ions (i n i t i a l c o n f i g ,

moves)
contender . s o r t ()
games . append (contender)
pr in t (s t r (contender [0])+s t r (l en (

contender))) i f verbose e l s e None
pr in t (" completed")

e l i f n==7:
#7 b l o c k s
pr in t ("Analyzing 7 co l o r ed b locks games")
f o r i in range (2 , 17) :
f o r j in range (i +1 ,17) :
f o r k in range (j +1 ,17) :
f o r m in range (k+1 ,17) :
f o r n in range (m+1 ,17) :
f o r p in range (n+1 ,17) :

i n i t i a l c o n f i g = [1 , i , j , k ,m, n , p]
game_exists = Fal se
f o r game in games :

i f i n i t i a l c o n f i g in game :

54

game_exists = True
break

i f not game_exists :
contender = permutat ions (i n i t i a l c o n f i g ,

moves)
contender . s o r t ()
games . append (contender)
pr in t (s t r (contender [0])+s t r (l en (

contender))) i f verbose e l s e None
pr in t (" completed")

e l i f n==8:
#8 b l o c k s
pr in t ("Analyzing 8 co l o r ed b locks games")
f o r i in range (2 , 17) :
f o r j in range (i +1 ,17) :
f o r k in range (j +1 ,17) :
f o r m in range (k+1 ,17) :
f o r n in range (m+1 ,17) :
f o r p in range (n+1 ,17) :
f o r q in range (p+1 ,17) :

i n i t i a l c o n f i g = [1 , i , j , k ,m, n , p , q]
game_exists = Fal se
f o r game in games :

i f i n i t i a l c o n f i g in game :
game_exists = True
break

i f not game_exists :
contender = permutat ions (

i n i t i a l c o n f i g , moves)
contender . s o r t ()
games . append (contender)
pr in t (s t r (contender [0])+s t r (l en (

contender))) i f verbose e l s e None
pr in t (" completed")

return (games)

def game l i s t2 (n , moves , verbose=False) :
#purpose : g ene r a t e s a l l unique subgames o f a d e f i n e d

game
#vars : moves the permuta t ions t h a t d e f i n e the group

a long wi th t h e i r i n v e r s e s
#l im i t a t i o n s : c u r r e n t l y works f o r one co l o r e d games

on ly
#l a s t updated : 2015−12−09
#note s : t h i s f un c t i on i s n e c e s s a r i l y long , i n s t e a d o f

condens ing the code i t i s pu rpo s e l y l e f t l ong f o r

55

r e a d a b i l i t y and under s tand ing
games = []
i f n==2:
#2 b l o c k s
pr in t ("Analyzing 2 two−co l o r ed b locks games")
f o r i in range (2 , 17) :

contender = permutations2 ([[1] , [i]] , moves)
contender . s o r t ()
i f contender not in games :

games . append (contender)
pr in t (s t r (contender [0])+s t r (l en (contender))) i f

verbose e l s e None
pr in t (" completed")

e l i f n==3:
pr in t ("Analyzing 3 two−co l o r ed b locks games")
f o r i in range (1 , 2) :
f o r j in range (i +1 ,17) :
f o r k in range (j +1 ,17) :

i n i t i a l c o n f i g = [[i] , [j , k]]
game_exists = Fal se
f o r game in games :

i f i n i t i a l c o n f i g in game :
game_exists = True
break

i f not game_exists :
contender = permutations2 (i n i t i a l c o n f i g , moves

)
contender . s o r t ()
games . append (contender)
pr in t (s t r (contender [0])+s t r (l en (contender))

) i f verbose e l s e None
pr in t (" completed")

e l i f n==4:
pr in t ("Analyzing 4 two−co l o r ed b locks games")
f o r i in range (1 , 2) :
f o r j in range (i +1 ,17) :
f o r k in range (j +1 ,17) :
f o r m in range (k+1 ,17) :

i n i t i a l c o n f i g 1 = [[i] , [j , k ,m]]
i n i t i a l c o n f i g 2 = [[i , j] , [k ,m]]
game1_exists = False
game2_exists = False
f o r game in games :

i f i n i t i a l c o n f i g 1 in game :
game1_exists = True
break

56

f o r game in games :
i f i n i t i a l c o n f i g 2 in game :

game2_exists = True
break

i f not game1_exists :
contender = permutations2 (i n i t i a l c o n f i g 1 ,

moves)
contender . s o r t ()
games . append (contender)
pr in t (s t r (contender [0])+s t r (l en (contender

))) i f verbose e l s e None
i f not game2_exists :

contender = permutations2 (i n i t i a l c o n f i g 2 ,
moves)

contender . s o r t ()
games . append (contender)
pr in t (s t r (contender [0])+s t r (l en (contender

))) i f verbose e l s e None
pr in t (" completed")

e l i f n==5:
pr in t ("Analyzing 5 two−co l o r ed b locks games")
f o r i in range (1 , 2) :
f o r j in range (i +1 ,17) :
f o r k in range (j +1 ,17) :
f o r m in range (k+1 ,17) :
f o r n in range (m+1 ,17) :

i n i t i a l c o n f i g 1 = [[i] , [j , k ,m, n]]
i n i t i a l c o n f i g 2 = [[i , j] , [k ,m, n]]
game1_exists = False
game2_exists = False
f o r game in games :

i f i n i t i a l c o n f i g 1 in game :
game1_exists = True
break

f o r game in games :
i f i n i t i a l c o n f i g 2 in game :

game2_exists = True
break

i f not game1_exists :
contender = permutations2 (i n i t i a l c o n f i g 1 ,

moves)
contender . s o r t ()
games . append (contender)
pr in t (s t r (contender [0])+s t r (l en (

contender))) i f verbose e l s e None
i f not game2_exists :

57

contender = permutations2 (i n i t i a l c o n f i g 2 ,
moves)

contender . s o r t ()
games . append (contender)
pr in t (s t r (contender [0])+s t r (l en (

contender))) i f verbose e l s e None
pr in t (" completed")

e l i f n==6:
pr in t ("Analyzing 6 two−co l o r ed b locks games")
f o r i in range (2 , 17) :
f o r j in range (i +1 ,17) :
f o r k in range (j +1 ,17) :
f o r m in range (k+1 ,17) :
f o r n in range (m+1 ,17) :

i n i t i a l c o n f i g 1 = [[1] , [i , j , k ,m, n]]
i n i t i a l c o n f i g 2 = [[1 , i] , [j , k ,m, n]]
i n i t i a l c o n f i g 3 = [[1 , i , j] , [k ,m, n]]
game1_exists = False
game2_exists = False
game3_exists = False
f o r game in games :

i f i n i t i a l c o n f i g 1 in game :
game1_exists = True
break

f o r game in games :
i f i n i t i a l c o n f i g 2 in game :

game2_exists = True
break

f o r game in games :
i f i n i t i a l c o n f i g 3 in game :

game3_exists = True
break

i f not game1_exists :
contender = permutations2 (i n i t i a l c o n f i g 1 ,

moves)
contender . s o r t ()
games . append (contender)
pr in t (s t r (contender [0])+s t r (l en (

contender))) i f verbose e l s e None
i f not game2_exists :

contender = permutations2 (i n i t i a l c o n f i g 2 ,
moves)

contender . s o r t ()
games . append (contender)
pr in t (s t r (contender [0])+s t r (l en (

contender))) i f verbose e l s e None

58

i f not game3_exists :
contender = permutations2 (i n i t i a l c o n f i g 3 ,

moves)
contender . s o r t ()
games . append (contender)
pr in t (s t r (contender [0])+s t r (l en (

contender))) i f verbose e l s e None
pr in t (" completed")

e l i f n==7:
pr in t ("Analyzing 7 two−co l o r ed b locks games")
f o r i in range (2 , 17) :
f o r j in range (i +1 ,17) :
f o r k in range (j +1 ,17) :
f o r m in range (k+1 ,17) :
f o r n in range (m+1 ,17) :
f o r p in range (n+1 ,17) :

i n i t i a l c o n f i g 1 = [[1] , [i , j , k ,m, n , p]]
i n i t i a l c o n f i g 2 = [[1 , i] , [j , k ,m, n , p]]
i n i t i a l c o n f i g 3 = [[1 , i , j] , [k ,m, n , p]]
game1_exists = False
game2_exists = False
game3_exists = False
f o r game in games :

i f i n i t i a l c o n f i g 1 in game :
game1_exists = True
break

f o r game in games :
i f i n i t i a l c o n f i g 2 in game :

game2_exists = True
break

f o r game in games :
i f i n i t i a l c o n f i g 3 in game :

game3_exists = True
break

i f not game1_exists :
contender = permutations2 (

i n i t i a l c o n f i g 1 , moves)
contender . s o r t ()
games . append (contender)
pr in t (s t r (contender [0])+s t r (l en (

contender))) i f verbose e l s e None
i f not game2_exists :

contender = permutations2 (
i n i t i a l c o n f i g 2 , moves)

contender . s o r t ()
games . append (contender)

59

pr in t (s t r (contender [0])+s t r (l en (
contender))) i f verbose e l s e None

i f not game3_exists :
contender = permutations2 (

i n i t i a l c o n f i g 3 , moves)
contender . s o r t ()
games . append (contender)
pr in t (s t r (contender [0])+s t r (l en (

contender))) i f verbose e l s e None
pr in t (" completed")

e l i f n==8:
pr in t ("Analyzing 8 two−co l o r ed b locks games")
f o r i in range (2 , 17) :
f o r j in range (i +1 ,17) :
f o r k in range (j +1 ,17) :
f o r m in range (k+1 ,17) :
f o r n in range (m+1 ,17) :
f o r p in range (n+1 ,17) :
f o r q in range (p+1 ,17) :

i n i t i a l c o n f i g 1 = [[1] , [i , j , k ,m, n , p , q]]
i n i t i a l c o n f i g 2 = [[1 , i] , [j , k ,m, n , p , q]]
i n i t i a l c o n f i g 3 = [[1 , i , j] , [k ,m, n , p , q]]
i n i t i a l c o n f i g 4 = [[1 , i , j , k] , [m, n , p , q]]
game1_exists = False
game2_exists = False
game3_exists = False
game4_exists = False
f o r game in games :

i f i n i t i a l c o n f i g 1 in game :
game1_exists = True
break

f o r game in games :
i f i n i t i a l c o n f i g 2 in game :

game2_exists = True
break

f o r game in games :
i f i n i t i a l c o n f i g 3 in game :

game3_exists = True
break

f o r game in games :
i f i n i t i a l c o n f i g 4 in game :

game4_exists = True
break

i f not game1_exists :
contender = permutations2 (

i n i t i a l c o n f i g 1 , moves)

60

contender . s o r t ()
games . append (contender)
pr in t (s t r (contender [0])+s t r (l en (

contender))) i f verbose e l s e None
i f not game2_exists :

contender = permutations2 (
i n i t i a l c o n f i g 2 , moves)

contender . s o r t ()
games . append (contender)
pr in t (s t r (contender [0])+s t r (l en (

contender))) i f verbose e l s e None
i f not game3_exists :

contender = permutations2 (
i n i t i a l c o n f i g 3 , moves)

contender . s o r t ()
games . append (contender)
pr in t (s t r (contender [0])+s t r (l en (

contender))) i f verbose e l s e None
i f not game4_exists :

contender = permutations2 (
i n i t i a l c o n f i g 4 , moves)

contender . s o r t ()
games . append (contender)
pr in t (s t r (contender [0])+s t r (l en (

contender))) i f verbose e l s e None
pr in t (" completed")

#noth ing l a r g e r nece s sa ry
return (games)

#
##

########## Welcome to the Workspace/Example Area
##########

#
##

Examples o f f u n c t i o n s above are p r e s en t ed be low
Recommended you on ly use one f un c t i on a t a t ime
Recommended you read each d e s c r i p t i o n b e f o r e

op e ra t i n g as some f un c t i o n s r e q u i r e s i g n i f i c a n t
r e s ou r c e s

To run examples be low uncomment the s e c t i on , save
f i l e , and pass to Python i n t e r p r e t e r

#
##

61

#
##

#fo r ease o f use , pre−d e f i n e d game ru l e s , l e a v e t h e s e
uncommented

easymoves = [r ight , up , c_easy , r i gh t inv , upinv , c_easyinv]
hardmoves = [r ight , up , c , r i gh t inv , upinv , c_inv]

####PERMUTATIONS
##LAST MODIFIED: 2014−02−21
##CONDITION: Good
##DESC: Returns a l l o f t h e e l ement s in a group g i v en an

i n i t i a l e lement and g ene ra t o r s
#p r i n t (permuta t ions ([1 , 2 , 3] , easymoves)) #des i gned f o r

on ly s i n g l e c o l o r e d games
#p r i n t (permuta t ions2 ([[1 , 3]] , easymoves)) #des i gned f o r

any number o f c o l o r s
#p r i n t (permuta t ions2

([[1] , [2] , [3] , [4] , [5] , [6] , [7] , [8] , [9] , [1 0] , [1 1] , [1 2] , [1 3] , [1 4] , [1 5] , [1 6]] ,
easymoves)) #t h i s i s t he e n t i r e 4x4 easy group

####GAMEORDER
##LAST MODIFIED: 2015−12−09
##CONDITION: Good , f a s t
##DESC: For use on any co l o r i n g s , i d e n t i f i e s t he order

o f t he subgame genera t ed by the moves and i n i t i a l
c o n f i g passed to i t .

#p r i n t (gameOrder ([1 , 2] , hardmoves))
#p r i n t (gameOrder ([[1] , [2]] , hardmoves , True))

####GAMELIST
##LAST MODIFIED: 2015−12−05
##CONDITION: Good , can be e xp en s i v e when running move C

wi th n > 3
##DESC: For use on s i n g l e c o l o r e d games , i d e n t i f i e s a

s e t o f i n i t i a l p o s i t i o n s /games g i v en the number o f
c o l o r e d b l o c k s r e qu i r e d and a s e t o f moves

#moves = easymoves #moves can be s e t to easymoves or
hardmoves depending on which group you are ana l y z i n g

#n = 2 #s e t n to an i n t e g e r wi th domain o f 2−8 where
each n r e p r e s e n t s t he number o f s i n g l e−co l o r e d boxes

#g = game l i s t (n , moves , True) #True turns on ve r bo s e and
w i l l p r i n t r e s u l t s as they are encountered , you can
remove i t and acce s s da te through l i s t t h a t i s

62

r e tu rned .

####GAMELIST2
##LAST MODIFIED: 2015−12−05
##CONDITION: Good , can be e xp en s i v e when running move C

wi th n > 3
##DESC: For use on two−co l o r e d games , i d e n t i f i e s a s e t

o f i n i t i a l p o s i t i o n s /games g i v en the number o f
c o l o r e d b l o c k s r e qu i r e d and a s e t o f moves

#moves = easymoves #moves can be s e t to easymoves or
hardmoves depending on which group you are ana l y z i n g

#n = 2 #s e t n to an i n t e g e r wi th domain o f 2−8 where
each n r e p r e s e n t s t he t o t a l number o f c o l o r e d boxes
f o r example i f you have box 4 co l o r e d boxes o f red
and b l u e then l e t n=4. t h i s w i l l g ene ra t e the i n i t i a l
c o n f i g u r a t i o n s o f a l l subgames where 1 box i s b l u e

and 3 are red and 2 boxes are b l u e and 2 are red .
#g = game l i s t 2 (2 , moves , True) #True turns on ve r bo s e and

w i l l p r i n t r e s u l t s as they are encountered , you can
remove i t and acce s s da te through l i s t t h a t i s
r e tu rned .

####GODSNUMBER
##LAST MODIFIED: 2014−02−11
##CONDITION: Good
##PURPOSE: Find s i n g l e God ' s number / diameter o f graph

f o r one s i n g l e−co l o r e d game
##DESC: Creates an ad jacency matr ix and then computes

God ' s number , p r i n t i n g to f i l e bo th the ad jacency
matr ix and f i n a l matr ix I+A+...+A^k where k i s God ' s
number

#moves = easymoves
#po s i t i o n = [1 , 2 , 3]
#e l ements = permuta t ions (po s i t i on , moves) #use t h i s or

permuta t ions2 ()
#fname = "SOMEFILENAME" #used f o r t he name o f t he

ad jacency mat r i c e s t h a t are saved as TXT f i l e s
#k = godsnumber (e lements , moves , fname , True) #True turns

on ve r bo s e wi th upda te s o f each power c u r r e n t l y
checked or you may remove i t .

####SEARHPATH
##LAST MODIFIED: 2016−04−20
##CONDITION: Limited
##PURPOSE: Designed to f i n d a path from the i n i t i a l

c o n f i g u r a t i o n to any e lement in the 4x4 hard mode

63

##DESC: Def ine a l i s t o f e l ement s to be searched f o r by
us ing the f o rma t t i n g be low . The sea rchpa th f un c t i on
ac c ep t s a s i n g l e l i s t o f e l ement s in s c i p y
Permutation syn tax

##LIMITATIONS: This i s an e xp en s i v e program . I t w i l l
t a k e up to about 3 days to search f o r a s i n g l e
o b j e c t i v e , o b j e c t i v e s may be found qu i c k e r and they
are immedia te ly r e tu rned when they are found .

#o b j e c t i v e 1 = Permutation (1 ,16) (2 ,12) (3 ,8) (5 ,15) (6 ,11)
(9 ,14)

#o b j e c t i v e 2 = Permutation (2 ,5) (3 ,9) (4 ,13) (7 ,10) (8 ,14)
(12 ,15)

#o b j e c t i v e 3 = Permutation (1 ,4 ,16 ,13) (2 ,8 ,15 ,9)
(3 ,12 ,14 ,5) (6 ,7 ,11 ,10)

#o b j e c t i v e 4 = Permutation (1 ,13 ,16 ,4) (2 ,9 ,15 ,8)
(3 ,5 ,14 ,12) (6 ,10 ,11 ,7)

#o b j e c t i v e 5 = Permutation (1 ,4) (2 ,3) (5 ,8) (6 ,7) (9 ,12)
(10 ,11) (13 ,16) (14 ,15)

#o b j e c t i v e 6 = Permutation (1 ,13) (2 ,14) (3 ,15) (4 ,16) (5 ,9)
(6 ,10) (7 ,11) (8 ,12)

#o b j e c t i v e s = [o b j e c t i v e 1 , o b j e c t i v e 2 , o b j e c t i v e 3 ,
o b j e c t i v e 4 , o b j e c t i v e 5 , o b j e c t i v e 6]

#o b j e c t i v e s = [o b j e c t i v e 1 , o b j e c t i v e 2]
#p r i n t (s ea rchpa th (o b j e c t i v e s))

####ISADJACENT
##LAST MODIFIED: 2016−04−26
##CONDITION: Very good
##PURPOSE: I d e n t i f y whether two e l ement s o f a group

d e f i n e d by a l i s t o f g en e ra t o r s are ad j a c en t
##DESC: i sAd jac en t compares two e l ement s by app l y i n g the

p r e d e f i n e d t r an s f o rma t i on s to the f i r s t e lement and
checks a g a i n s t t h e second

#p i e c e1 = [[1 , 2] , [5]] #each c on f i g u r a t i o n i s a l i s t o f
l i s t s , where each i n t e r n a l l i s t r e p r e s e n t s a c o l o r
and the numbers are the boxes to be c on f i g u r e d

#p i e c e2 = [[4 , 7] , [3]] #t h i s l i s t has two c o l o r s t he
f i r s t has boxes 4 & 7 co l o r e d the same co l o r and then
box 3 i s c o l o r e d a second c o l o r

#p r i n t (i sAd ja c en t (p iece1 , p iece2 , easymoves)) #re t u rn s
f a l s e because they ' re not ad j a c en t

#p i e c e3 = [[1 , 3 , 5 , 7]] #t h i s l i s t d e f i n e s a s i n g l e
c o l o r e d board wi th boxes 1 ,3 ,5 ,7 c o l o r e d in

#p i e c e4 = [[2 , 4 , 6 , 8]]
#p r i n t (i sAd ja c en t (p iece3 , p iece4 , hardmoves)) #re t u rn s

t ru e

64

#piec e5 = [[1] , [2] , [3] , [4] , [5]] #t h i s i s t he d e f i n i t i o n
o f a f i v e c o l o r e d game

65

Part VI

Appendix B - GAP Group

De�nitions

The de�nitions below are pre-de�ned GAP groups. Copy the code to a text
editor and save as .g. Run code using the GAP system.

#GAP program and documentat ion a v a i l a b l e a t gap−system .
org

#The pre−d e f i n e d groups o f t he Rubik ' s S l i d e f o r 2x2 ,3 x3
,4 x4 easy and hard modes as d e f i n e d by
t rans fo rmat i ons , a long wi th the easy mode groups o f 5
x5 and 6x6 boards .

#Uncomment read command wi th c o r r e c t path to f i l e f o r
l o a d i n g i n t o GAP

#Read (" . . . / r u b i k s l i d e . g ") ;
#I f you in t end to use the GRAPE package uncomment l i n e

be low
#LoadPackage (" grape ") ; ;

r s2 :=Group ([(1 , 2) (3 , 4) , (1 , 3) (2 , 4) , (1 , 2 , 4 , 3)]) ; ;

r s 3 e :=Group ([(1 , 2 , 3) (4 , 5 , 6) (7 , 8 , 9) , (1 , 7 , 4) (2 , 8 , 5) (3 , 9 , 6)
, (1 , 3 , 9 , 7) (2 , 6 , 8 , 4)]) ; ;

r s3h :=Group ([(1 , 2 , 3) (4 , 5 , 6) (7 , 8 , 9) , (1 , 7 , 4) (2 , 8 , 5) (3 , 9 , 6)
, (1 , 2 , 3 , 6 , 9 , 8 , 7 , 4)]) ; ;

r s 4 e :=Group ([(1 , 2 , 3 , 4) (5 , 6 , 7 , 8) (9 , 10 , 11 , 12) (13 ,14 ,15 ,16)
, (1 , 13 , 9 , 5) (2 , 14 , 10 , 6) (3 , 15 , 11 , 7) (4 , 16 , 12 , 8)
, (1 , 4 , 16 , 13) (2 , 8 , 15 , 9) (3 , 12 , 14 , 5) (6 , 7 , 11 , 10)]) ; ;

rs4h :=Group ([(1 , 2 , 3 , 4) (5 , 6 , 7 , 8) (9 , 10 , 11 , 12) (13 ,14 ,15 ,16)
, (1 , 13 , 9 , 5) (2 , 14 , 10 , 6) (3 , 15 , 11 , 7) (4 , 16 , 12 , 8)
, (1 , 2 , 3 , 4 , 8 , 12 , 16 , 15 , 14 , 13 , 9 , 5) (6 , 7 , 11 , 10)]) ; ;

r s 5 e :=Group ([(1 , 2 , 3 , 4 , 5) (6 , 7 , 8 , 9 , 10) (11 ,12 ,13 ,14 ,15)
(16 ,17 ,18 ,19 ,20) (21 ,22 ,23 ,24 ,25) , (1 , 21 , 16 , 11 , 6)
(2 , 22 , 17 , 12 , 7) (3 , 23 , 18 , 13 , 8) (4 , 24 , 19 , 14 , 9)
(5 , 25 , 20 , 15 , 10) , (1 , 5 , 25 , 21) (2 , 10 , 24 , 16) (3 , 15 , 23 , 11)
(4 , 20 , 22 , 6) (7 , 9 , 19 , 17) (8 , 14 ,18 ,12)]) ; ;

r s 6 e :=Group ([(1 , 2 , 3 , 4 , 5 , 6) (7 , 8 , 9 , 10 , 11 , 12)

66

(13 ,14 ,15 ,16 ,17 ,18) (19 ,20 ,21 ,22 ,23 ,24)
(25 ,26 ,27 ,28 ,29 ,30) (31 ,32 ,33 ,34 ,35 ,36)
, (1 , 31 , 25 , 19 , 13 , 7) (2 , 32 , 26 , 20 , 14 , 8) (3 , 33 , 27 , 21 , 15 , 9)
(4 , 34 , 28 , 22 , 16 , 10) (5 , 35 ,29 ,23 ,17 ,11) (6 , 36 , 30 , 24 , 18 , 12)
, (1 , 6 , 36 , 31) (2 , 12 , 35 , 25) (3 , 18 ,34 ,19) (4 , 24 ,33 , 13)
(5 , 30 , 32 , 7) (8 , 11 ,29 ,26) (9 , 17 ,28 ,20) (10 ,23 ,27 ,14)
(15 ,16 ,22 ,21)]) ; ;

67

