

Cyclic Sulfones by Double Conjugate Addition of Rongalite

Melina Goga, Hao Zong, Jazmin Prana, Rudolph Michel, Antonia Muro, and Dr. Magnus Bebbington* Department of Chemistry and Biochemistry, Montclair State University

Rongalite Introduction

- ❖ Reduced form of SO₂
- Used as bleaching agent
- Very cheap, bulk chemical
- Has low odor
- Environmentally friendly
- Has potential as a sulfur nucleophile

Organic Transformations Mediated by Rongalite

Alkylation of Rongalite

Rongalite serving as a Reducing Agent

Hypothesis

Rongalite can undergo double conjugate addition in reaction with dienones in order to give cyclic sulfones.

$$- \bigcup_{0}^{0} \bigcup_{S}^{O} \bigcup_{S}^{O}$$

Substrate Synthesis

Substrates Synthesized

Yield: 67%

Yield: 77%

Yield: 45%

Results and Optimization - Dibenzalacetone

Time	Conditions	Equivalents of Rongalite	% Yield
Overnight	acetic acid	1.5	81
3 hr	acetic acid	1.5	75
3111		1.5	73
18 hr	DMSO	1.5	28
18 hr	DMSO, K ₂ CO ₃	1.5	9
1 hr	DMSO, acetic acid	1.5	28
2 hr	EtOH	1.5	23
Overnight	acetic acid	1.1	64
3 hr	EtOAc, TBAB	1.5	8
3 hr	EtOH, acetic acid	1.5	42

Proof of Structure- Major Diastereomer

The oxidation of sulfide was performed and it produced the trans sulfone.
The spectroscopic data matched those in literature.

Reference

Gendron, T., Kessedjian, H., Davioud-Charvet, E., & Lanfranchi, D. A. (2015). Diastereoselective Synthesis of 2,6-Diaryltetrahydrothiopyran-4-ones by Phase-Transfer Catalysis. *European Journal of Organic Chemistry*, *2015*(8), 1790–1796.

Proposed Mechanism of Conjugate Addition

Rationalization of Stereochemistry

- For the sulfur heterocycle, boat conformer thought to be preferred
- Feature specific to sulfur: long C-S bond length

Conclusion

Rongalite has the potential to act as a double nucleophile for sulfone synthesis.

Acknowledgments and References

Kotha, S., & Khedkar, P. (2011). Rongalite: A useful green reagent in organic synthesis. *Chemical Reviews*, *112*(3), 1650–1680.