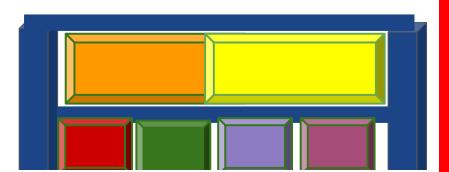

The New Jersey Student Learning Standards

New Jersey Student Learning Standards


Technology:

- **8.1.5.AP.1:** Compare and refine multiple algorithms for the same task and determine which is the most appropriate.
- **8.1.5.AP.2**: Create programs that use clearly named variables to store and modify data.
- **8.1.5.AP.3**: Create programs that include sequences, events, loops, and conditionals.
- **8.1.5.AP.4:** Break down problems into smaller, manageable sub-problems to facilitate program development.
- **8.1.5.AP.5:** Modify, remix, or incorporate pieces of existing programs into one's own work to add additional features or create a new program.

K-12 Computer Science Education Programs

Computer Science for Everyone, Everywhere

Angela Williams Nash, Certified Instructional Designer Technology Lead Teacher East Orange School District East Orange, New Jersey 07018 P

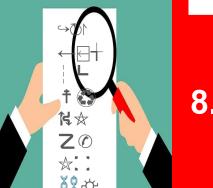
Core Concept 8.1.5 Algorithms & Programming

An algorithm is a sequence of steps designed to accomplish a specific task. Algorithms are translated into programs, or code, to provide instructions for computing devices. Algorithms and programming control all computing systems, empowering people to communicate with the world in new ways and solve compelling problems.

- Communication Between Humans
- > Algorithms
- Debugging
- > Programming
- Computer Programming
- Works Cited

8.1.5

K-12 Computer Science Education Programs



People have always created methods to communicate in nonverbal ways. People create codes with *pictures* and symbols to share secret

messages!

Computer Science for Everyone, Everywhere Cast Orange, New Jersey 07018

People use flashlights in the dark to send and receive secret messages!

Fire and smoke signals have been used share secret messages!

Writing Algorithms

People create and use *pictographs* to represent letters or words in order to share secret messages.

Mrs. Nash's Pictograph Chart

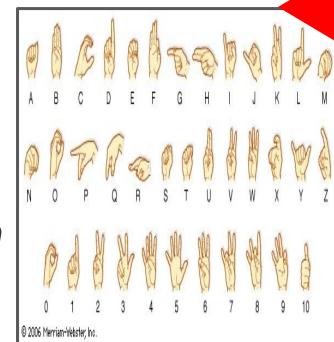
Symbol	Meaning		Symbol	Meaning	
Å	а		•1•	m	
Þ	b		•	е	
Ď	С		•	h	
w	0		\$	1	
∽.	g		Г	f	
*	r		§	t	
Ą	s			е	
L-	t		1	i	
A	d		i	S	

Braille is a reading and writing system for blind and vision impaired people,

made up of raised dots that can be 'read' by touch.

	:	••	*:	••	:•	::	:.		.:
	but	can	do	every	from	go	have		just
•	:	••	:		:	::	•	:	:
knowledge	like	more	not		people	quite	rather	SO	that
•	: .	••		::	•				
us	very	it	you	as	wil				

	.:	.:	••	•	••	•:	•	::	•.
and	ar	by was	con	ch child	com	dd dis	ea	ed	en enough
::	:-	:	::	:		•	::	::	•
er	ff to	for	gg were	gh	in	ing	of	ou out	ow
••	•	:	•	•	::				
sh	st	the	th	wh	with				



Sign language is used by people who are deaf.

The gestures or symbols in sign

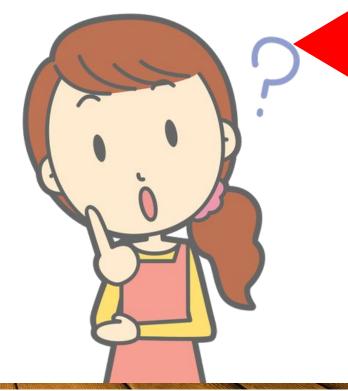
language are organized in a linguistic way. *Each individual gesture is called a sign*.

Sign language Each sign has three distinct parts:

- **♦** the handshape,
- the position of the hands, and
- the movement of the hands.

American Sign Language (ASL) is used most in our country. Other countries have their own sign language.

Again, people have always found ways to communicate nonverbally!


Algorithms

List three tasks or things you do everyday?

Examples of Daily Tasks

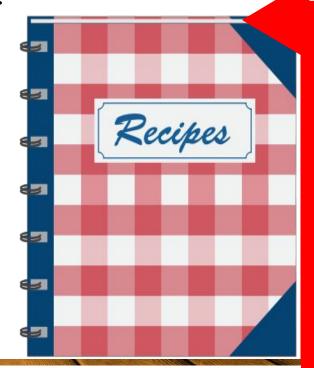
- ★ getting ready for school
- ★ brushing teeth
- ★ tying sneaker strings
- travelling to or from school
- school day
- structure of a class
- participating in clean-up time

Take one item from your list and write the steps you use to complete that task.

You have just created your first algorithm!

Sooooo! What is an algorithm?

8.1.5


Computer Science for Everyone, Everywhere Angela Williams-Nash, Certified Instructional Designer Technology Lead Teacher East Orange School District

An algorithm is a recipe book! In the recipe book, you have list the **step by step** instructions on how to make your favorite sandwich.

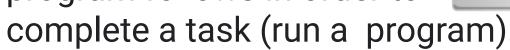
The **sequence** is the **specific** order instruction of your instructions.

In fact, the instructions are so good, that anyone who follows the recipe can make the same, exact sandwich!

A computer algorithm

is like a **set of** instructions that tell the computer what to do!

So, just like your recipe book tells you how to make a

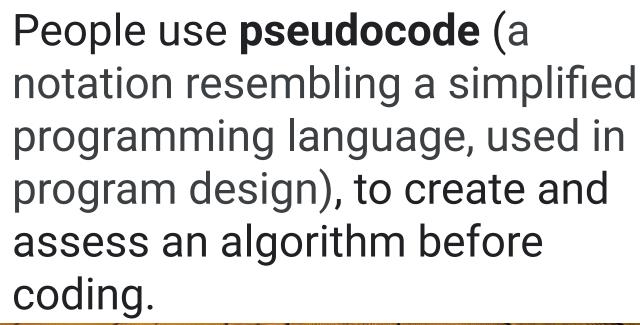

sandwich, a computer

algorithm is a

list of step by step

instructions that a computer

program follows in order to



Writing Algorithms Pseudocode

Writing Algorithms

8.1.5

Representing Yes or No

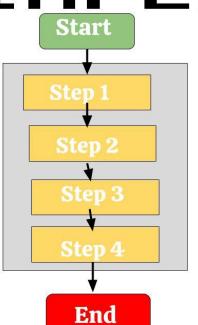
Yes	No
1	2

Writing Algorithms

8.1.5

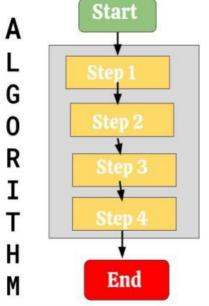
Directional Arrows

left	
right	-
up	A
down	\
Clockwise turn	C
Counter clockwise turn	~



Types of Algorithms SIMPLE

Simple algorithms, start, complete a sequence of steps then stop.



Types of Algorithms

SIMPLE

Pseudocode

- 1. Start
- 2. Stand in cafeteria line.
- 3. Pick up tray.
- 4. Pick up spork and napkin packet.
- 5. Place on left side of tray.
- 6. Pick up milk.
- 7. Place on right side of tray.
- 8. Pick up prepared hot meal.
- 9. Place in center, bottom part of the tray.
- 10. Pick up fruit.
- 11. Place in center, top of tray.
- 12. Go to your seat.
- 13. End

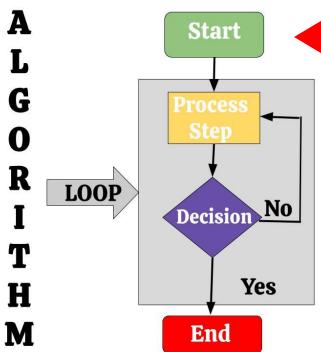
Angela Williams Nash, Certified Instructional Designer Technology Lead Teacher East Orange School District East Orange, New Jersey 07018

In order for your algorithm to work you must use provide, clear, precise and efficient steps!

Writing Algorithms

Use the box below to write a dance algorithm that makes your human robot dance. It must last for at least 15 seconds.

Dance Algorithm



Types of Algorithms

Algorithms with a loop allow you to repeat sets of instructions without having to write them out multiple times.

Writing Algorithms

Revisit your dance algorithm. Look for steps that you repeat for example "step to the left three times". Revise your algorithm to include loops.

Dance Algorithm Revision#1

Types of Algorithms

Repetitive **Algorithms or** "Do Loop" requires a program to run multiple times.

Repetitive Algorithm or "Do Loop"

Repetition (the action of repeating something) in a program means that lines of code will be run multiple times. *Iteration* is a term similar to repetition, it means to continue repeating an action until you achieve the correct outcome.

Writing Algorithms

Repetitive Algorithm or "Do Loop"

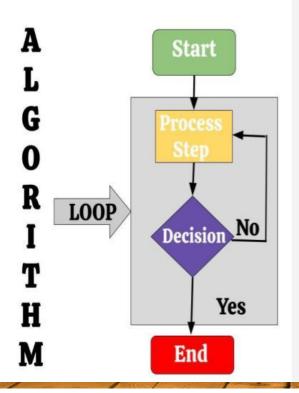
int product = 3; while (product <= 111) product = 3 * product;

Repetition (the action of repeating something) in a program means that lines of code will be run multiple times. Iteration is a term similar to repetition, it means to continue repeating an action until you achieve the correct outcome.

Pseudocode

Objective: Multiple a number until it the product exceeds 100.

- Start
- Product is 3.
- Is product less than or equal to 100?
 - a. Yes! Go to 7.
 - b. No! Go to 4.
- Multiple by 3 * product.
- You have a new product.
- Go to 3.
- End

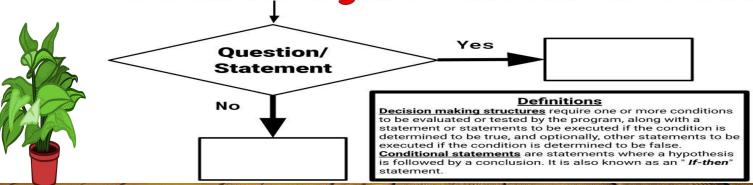


Writing Algorithms

Pseudocode⁴

Objective: Find the 5 of diamonds in a deck of cards.

- Start-
- 2. Select a card from the deck.
- Is it the 5 of diamonds?
 - a. Yes go to 4.
 - b. No go back to 2.

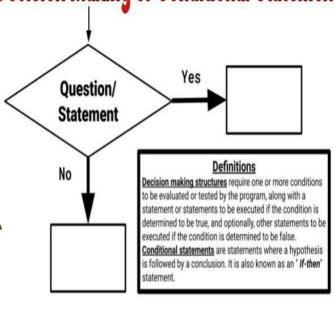


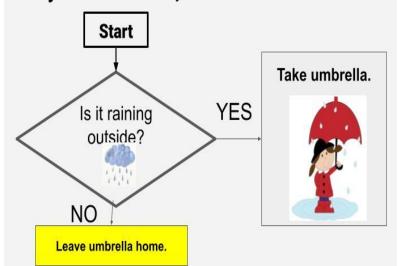
Types of Algorithms

Decision Making or Conditional

Algorithms allow selection, making different things happen based on different conditions. You use this process everyday to make decisions.

Decision Making or Conditional Statement

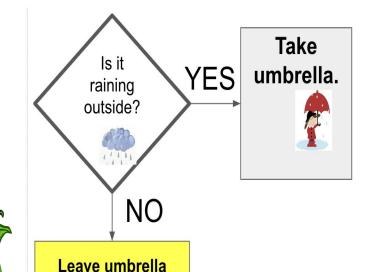

Computer Science for Everyone, Everywhere Angela Williams Nash, Certified Instructional Designer Technology Lead Teacher East Orange School District East Orange, New Jersey 07018


Writing Algorithms

Decision Making or Conditional Statement

Pseudocode

Objective: Decide if you need an umbrella.



Writing Algorithms

Pseudocode

Decision Making

Written as pseudocode in programming.

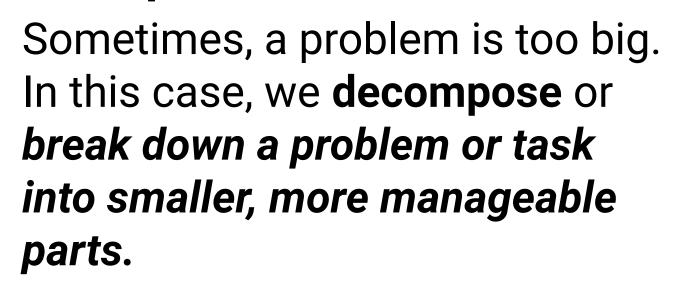
If (raining outside)

Take umbrella

Else

Leave it home

home.



Writing Algorithms Decomposition

Debugging

Debugging is the process of finding and fixing errors. A bug is present anytime your program does not function as expected.

Debugging

Errors stop your program from working correctly. Possible errors could be:

Logic - testing for being to hot when you meant to test for being too cold.

Sequence - steps are in the wrong order. **Spelling** mistakes

Writing Algorithms

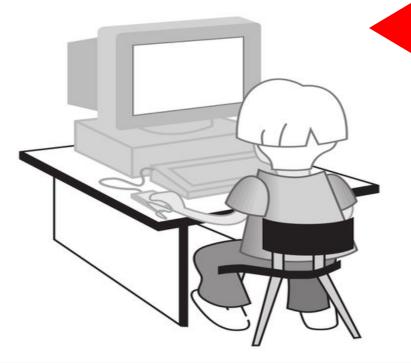
Debugging your dance algorithm.

Were there any parts that confused your human robot? Go through and clarify, DEBUG confusing steps.

Dance Algorithm Revision#2 DEBUGGING

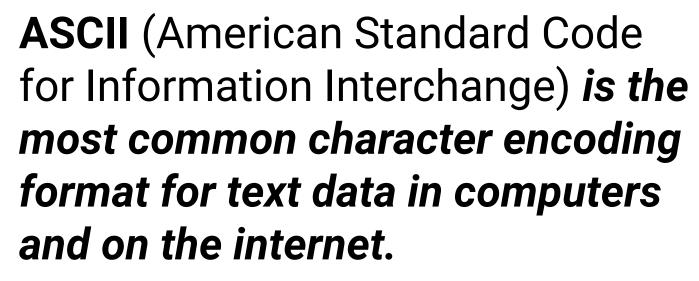
8.1.5

K-12 Computer Science Education Programs



Let's look at the way **people** communicate with computers!

Programs store and manipulate data by using numbers or other symbols to represent information. Let's go through a few examples.



Human-Computer Communication

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
1	1	[START OF HEADING]	33	21	!	65	41	A	97	61	а
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	C
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	е
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	A	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4C	L	108	6C	T
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	p
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	V
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	X
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	У
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	1
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]

Human-Computer Communication

Binary code is one type of coding that uses only 0 and 1 to represent letters, numbers, and symbols. It is called binary code because it's made of only two symbols. The "bi" in binary means two!

Human-Computer Communication

The hardware of computers has only two electrical states, on or off. These can be represented by

- 0 or zero (off), or
- 1 or one (on).

Programming Human-Computer Communication

Letters, numbers, and symbols are translated to eight-character binary numbers (0 and 1) as you work with them through the software on your computer.

Programming Human-Computer Communication

BINARY CODE ALPHABET REFERENCE

1 A 00001 14 N 01110 2 B 00010 15 0 01111

C 00011 16 P 10000

4 D **00100** 17 Q **10001**

5 **E 00101** 18 **R 10010**

6 F **00110** 19 **\$ 10011**

7 **G 00111** 20 **T 10100**

8 H **01000** 21 U **10101**

9 | **01001** 22 **V 10110**

10 J **01010** 23 W **10111**

11 **K 01011** 24 **X 11000**

12 L **01100** 25 Y **11001**

13 M **01101** 26 7 **11010**

Number	Binary Code	Number	Binary Code
0	0	16	10000
1	01	17	10001
2	10	18	10010
3	11	19	10011
4	100	20	10100
5	101	21	10101
6	110	22	10110
7	111	23	10111
8	1000	24	11000
9	1001	25	11001
10	1010	26	11010
11	1011	27	11011
12	1100	28	11100
13	1101	29	11101
14	1110	30	11110
15	1111	31	11111

Human-Computer Communication

Unicode provides a unique number.

This means that text can be shared and displayed across different systems without loss of information or character corruption.

Human-Computer Communication

Unicode assigns each character a unique code point. Look at the example below:

"A" is U+0041

Programming Human-Computer Communication

																			_	
Dec	Hx	Oct	Char	* %	Dec	Hx	Oct	Html	Chr	Dec	Hx	Oct	Html	Chr	Dec	Hx	Oct	Html Ch	ir	20
0	0	000	NUL	(null)	32				Space	64	40	100	@	0	96	60	140	496 ;		
1	1	001	SOH	(start of heading)	33			6#33;	1	65			A		97	61	141	6#97;	a	
2	2	002	STX	(start of text)	34	22	042	e#34;	rr	66	42	102	B	В	98	62	142	b	b	
3				(end of text)	35			#		67			e#67;					c	C	
4				(end of transmission)	36			\$		68			¢#68;					d		
- 5	5	005	ENQ	(enquiry)	37			6#37;		69			«#69;					e		
6	6	006	ACK	(acknowledge)	38			&		70			F					f		
7	7	007	BEL	(bell)	39			'		71			6#71;					g		
8	8	010	BS	(backspace)	40			((72			6#72;					h		
9		011		(horizontal tab)	41))	73			6#73;					i		
10		012		(NL line feed, new line)	42			*		74			6#74;					j		
11	В	013	VT	(vertical tab)	43			+	+	75			e#75;		107			k		
12	С	014	FF	(NP form feed, new page)	44			,		76			6#76;					l		
13	D	015	CR	(carriage return)	45			-		77	_		e#77;					%#109 ;		
14	E	016	SO	(shift out)	46	2E	056	.		78	4E	116	N	N				n		
15	F	017	SI	(shift in)	47	2F	057	6#47;	/	79			6#79;					o		
16	10	020	DLE	(data link escape)	48			0		80			P		112			p		
17	11	021	DC1	(device control 1)	49			1		81			Q		113			q		
18	12	022	DC2	(device control 2)	50			6#50;		82			6#82;		114	72	162	r	r	
19	13	023	DC3	(device control 3)	51			3		83	53	123	6#83;	S	115	73	163	s	s	
20	14	024	DC4	(device control 4)	52	34	064	4	4	84	54	124	T	T				t		
21	15	025	NAK	(negative acknowledge)	53	35	065	6#53;	5	85	55	125	U	U	117	75	165	u	u	
22	16	026	SYN	(synchronous idle)	54	36	066	a#54;	6	86	56	126	£#86;	V	118	76	166	v	V	
23	17	027	ETB	(end of trans. block)	55	37	067	a#55;	7	87	57	127	W	W	119	77	167	w	w	
24	18	030	CAN	(cancel)	56	38	070	8	8	88			£#88;		120	78	170	x	×	
25	19	031	EM	(end of medium)	57	39	071	9	9	89	59	131	Y	Y	121			y		
26	1A	032	SUB	(substitute)	58	3A	072	:	=	90	5A	132	Z	Z	122			z		
27	18	033	ESC	(escape)	59	зв	073	;	-	91	5B	133	[[123	7B	173	{	-{	
28	10	034	FS	(file separator)	60	30	074	6#60;	<	92	5C	134	6#92;	1	124	7C	174		1	
29	1D	035	GS	(group separator)	61			=		93			e#93;		125			}		
30	1E	036	RS	(record separator)	62			>					^					~		
31	1F	037	US	(unit separator)	63	ЗF	077	?	2	95	5F	137	«#95;	_	127	7F	177		DE	L

Computer Science for Everyone, Everywhere

Angela Williams-Nash, Certified Instructional Designo Technology Lead Teacher East Orange School District Fast Orange, New Jersey 07018

Source: www.LookupTables.com

Programming Human Communication

Human-Computer Communication

Unicode supports over a million code points, which can represent characters from various scripts, symbols, emoji, and more.

Programming Human-Computer Communication

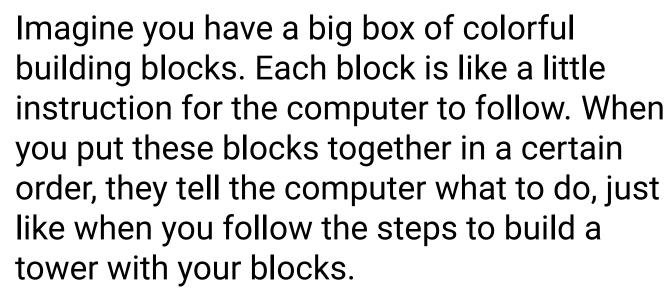
One of the key advantages of **Unicode** is its universality and inclusivity, allowing for the representation of text in numerous languages and scripts, including those that are not traditionally supported by older encoding standards like ASCII.

Programming University Communication

Human-Computer Communication

This makes Unicode very important for multilingual computing, internationalization, and globalization of software and content.

Computer Programming



Computer ProgrammingWhat is Computer Programming?

P

C-12 Computer Science for DeCausing Name of Computer Science for DeCausing Name of Computer Science for DeCausing Name of Computer Science Education Programs The Second District Computer Science For DeCausing Science Science Science For DeCausing Science Science Science For DeCausing Science S

Computer Programming What is Computer Programming?

Now, these blocks are special because they're made for the computer. They tell it how to do things like play a game, draw a picture, or even talk to other computers far away. When you press a button on the computer or a tablet, it follows the instructions from these blocks to do what you want, like open a game or show a video.

Computer Programming What is Computer Programming?

// Function to collect numbers from the user

So, computer programs are like sets of instructions that tell the computer what to do, just like you use instructions to build something with your building blocks!

```
function collectNumbers() {
  let numbers = [];
 for (let i = 1; i <= 4; i++) {
    let input = prompt("Enter number " + i + ":");
    let number = parseFloat(input):
    if (!isNaN(number)) {
       numbers.push(number)
      alert("Invalid input. Please enter a valid number.");
 return numbers:
// Function to calculate sum of numbers
function calculateSum(numbers) {
 for (let number of numbers) {
    sum += number:
// Function to calculate average of numbers
function calculateAverage(numbers) {
 let sum = calculateSum(numbers);
 return sum / numbers.length:
// Main function
function main() {
 let numbers = collectNumbers():
 if (numbers !== null) {
    let sum = calculateSum(numbers);
    let average = calculateAverage(numbers);
     alert("Sum: " + sum + "\nAverage: " + average);
// Call the main function
```


Works Cited

- OpenAl. 2024. ChatGPT (2023) Algorithms & Programming. Retrieved from https://www.openai.com/
- What is Braille?
- What is Sign Language?
- What is ASCII?
- What is Binary Code?

