The Development of Failure to Learn Mathematics (FtLM): a discursive perspective

Einat Heyd-Metzuyanim Technion – Israel Institute of Technology

Lecture at Montclair State University Graduate Seminar April 26, 2022

2005-2007, The high school of Arts, Jerusalem, Israel

28/04/2022 14:41

Failure to Learn Mathematics (FtLM) – huge amount of research, and yet still many gaps

Cognitive perspective: Explains FtLM as a problem in the development of a certain mental capacity (Butterworth, 2005; Geary, 2011; Dowker, 2019)

Mostly relates to FtLM as a state

• Main terms: Dyscalculia; Mathematical Learning Disability; Mathematical competence

Affective perspective: Explains FtLM (partially) in terms of "math anxiety" or "low math concept", or "low motivation"

(Dowker et al., 2016; Ma, 1999; Ramirez et al., 2018)

- Relates to FtLM as a process (reciprocal relations between affect and achievements), but at a very macro-level
- Main terms: Math anxiety; math self-concept; motivation to learn mathematics; self-efficacy in mathematics

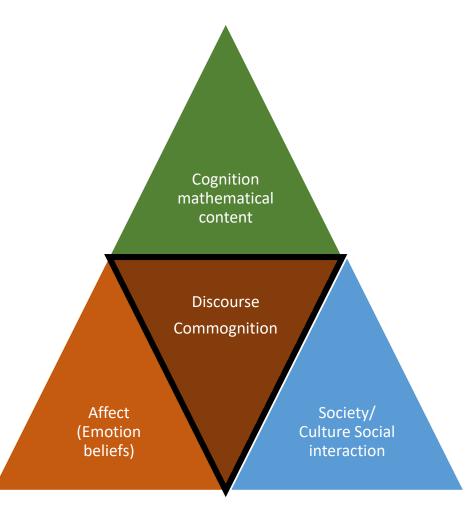
Social perspective: Explains FtLM in terms of marginalization, lack of opportunities to learn, and social narratives inhibiting engagement in learning

(Ben-Yehuda et al., 2005; Martin, 2000; Tan et al., 2019)

- Relates to FtLM mostly as a state, sometimes as process, rarely relates to the mathematical content
- Main terms: race; gender; home-environment; SES

Cognitive explanation: FtLM happens because of inherent/developmental deficits

- But then: why is math anxiety so strongly correlated with achievements (and the relation is bi-directional)?
 - Why are there more MLD in low SES?
 - Why is math achievement so strongly correlated with SES? With Gender (in certain countries)?


Affective explanation: FtLM happens b/c students develop apprehension towards math

- But then why do certain cultures have high incidents of anxiety and high achievements?
 - Where does the anxiety come from? How does it develop?
 - How does the anxiety affect learning (not just test taking)?

Social explanation: FtLM happens b/c students of certain identities are not given sufficient OTLs

- But then why do certain students with similar identities fail and other succeed?
- How does the identity label impact OTLs?

There is need for a holistic perspective

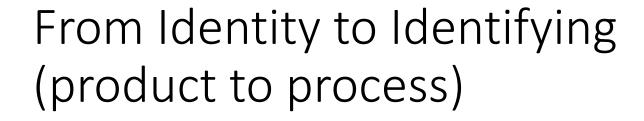
Commognition (Sfard, 2008) in a nutshell

Major underlying assumptions

- Thinking is an intra-personal form of communication
- Mathematics is a discourse
 - Defined by certain keywords, visual mediators, narratives and routines
- Learning is becoming a participant in a community

If we want to study learning, let us study students' discourse

The theory


- Learners start by participating ritually imitating others
- Gradually, their participation becomes more explorative, as they master the routines of the discourse

Identity in communicational terms

"A collection of stories, told about a person, that are reifying, significant and endorsable" (Sfard & Prusak, 2005)

Types of identity stories:

- 1st Person, 2nd P, 3rd P stories
- Current identity: stories about the current situation
- Designated identity: stories about how things should be

Mathematizing Subjectifying

Communicating about mathematical objects Communicating about the participants in the discourse

> Identifying communicating about what people *are* or *have*

Levels of subjectifying

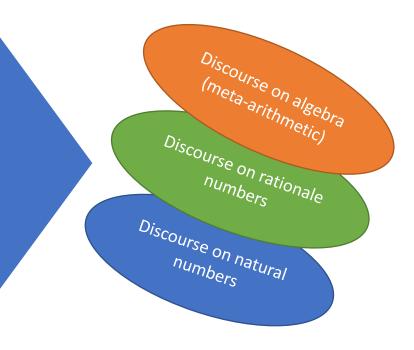
Specific "I don't think I solved this right"

General

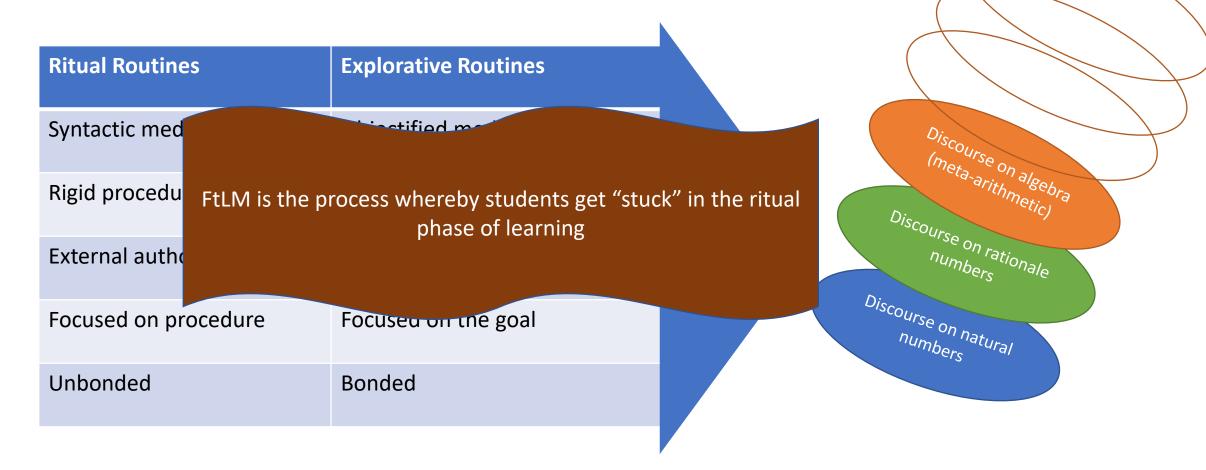
"I <u>always</u> fail on this in tests"

Properties/Membership

"I'm not good with fractions"


Implicit identifying: Actions intended to elicit in others identity narratives about oneself

Failure to Learn Mathematics - A discursive definition


A consistent impasse to developing an identity of inclusion in a certain mathematical community/discourse

Learning as progressing from rituals to explorations

Ritual Routines	Explorative Routines
Syntactic mediation	Objectified mediation
Rigid procedures	Flexible procedures
External authority	Internal authority/Agentivity
Focused on procedure	Focused on the goal
Unbonded	Bonded

Learning as progressing from rituals to explorations

Lavie, I., Steiner, A., & Sfard, A. (2019); Sfard & Lavie (2005)

28/04/2022 14:41

The story of Idit

- 7th Grader (Age: 13)
- Moderate-high achievements
- Identifies herself as generally excelling in math
- Her only problem is that she's "not good with fractions"
- Participates in my out-of-school course, succeeds at final year exams, gets tracked to the highest track
- End of 9th grade: Idit fails math; gets tracked to the lowest (basic) high-school math track
- Reports severe "math anxiety"

28/04/2022 14:41

Heyd-Metzuyanim, E. (2015). Vicious cycles of identifying and mathematizing: A case study of the development of mathematical failure. Journal of the Learning Sciences, 24(4), 504–549.

Idit's 1st math interview – 7th grade

Write >,< or = 1/5 [] 1/7

Idit: So Um.. (looks at interviewer, smiles) here I'm completely unsure, I told you I'm not good with fractions. (Looks back at the sheet), so I think... that this is bigger (points to 1/5).. [I'm] not sure.

Interv: Why do you think so?

Mathematizing

The task: write >,< or =: 1/5 [] 1/7

Idit: So Um.. (looks at interviewer, smiles) here I'm completely unsure, I told you I'm not good with fractions. (Looks back at the sheet), so I think... that this is bigger (points to 1/5).. [I'm] not sure.

Interv: Why do you think so?

Subjectifying

The task: write >,< or =: 1/5 [] 1/7

Idit: So Um.. (looks at interviewer, smiles) here I'm completely unsure, I told you I'm not good with fractions. (*Looks back at the sheet*), so I think... that this is bigger (*points to 1/5*).. [I'm] not sure.

Interv: Why do you think so?

Identifying

The task: write >,< or =: 1/5 [] 1/7

Idit: So Um.. (looks at interviewer, smiles) here I'm completely unsure, I told you I'm not good with fractions. (*Looks back at the sheet*), so I think... that this is bigger (*points to 1/5*).. [I'm] not sure.

Interv: Why do you think so?

Analysis of ritual/explorative participation

The task: write >,< or = 1/5 [] 1/7

Reified identity narratives of failure (specific to fraction)

authority

Idit: So Um.. (looks at interviewer, smiles) here i'm completely unsure, I told you I'm not good with fractions. (Looks back at the sheet), so I think... that this is bigger (points to 1/5).. [I'm] not sure.

Interv: Why do you think so?

Idit: 'cause, if I'm not mistaken, in elementary school we were told that the smaller the number, so it's bigger. That's what we were told (shrugs

shoulders, slightly smiles).

Syntactic mediaton 1 / 5 / 7 treated a separate signs

Idit's discourse on natural numbers

Idit: (Reads the question) Um.. Four shirts cost 200 \$, six pairs of pants cost 300\$. Rina bought two shirts and two pairs of pants. How much did she pay? So she bought two shirts which is 100 \$ (looks down)

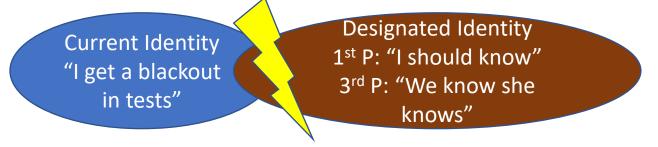
Interv: Umhmm

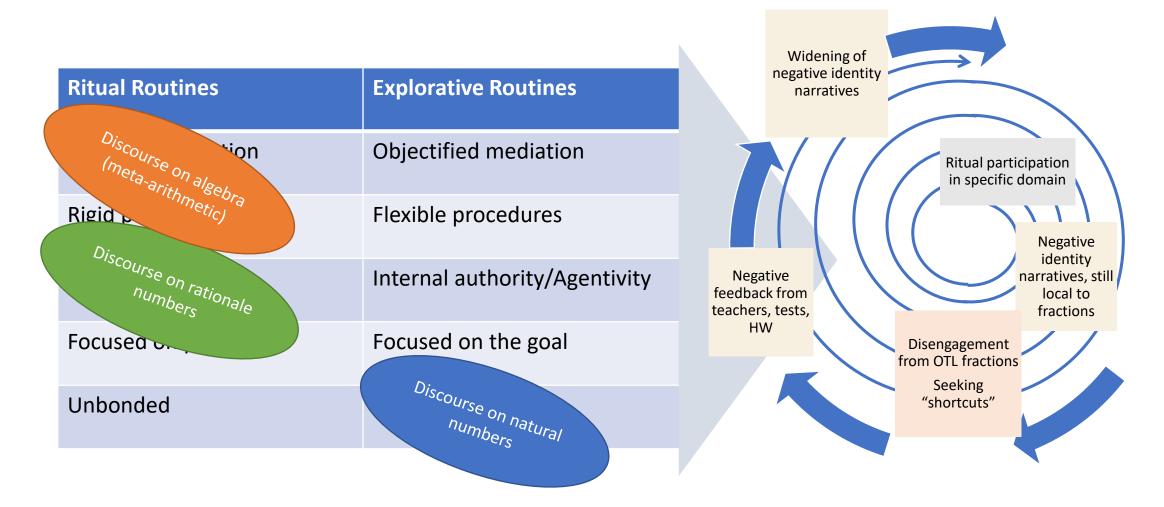
Idit: And two pants which is... also 100 \$

Interv: OK

Idit: (Writes) so that gives 200\$

Idit's discourse on natural numbers


Idit: (Reads the question) Um.. Four shirts cost 200 \$, six pairs of pants cost 300\$. Rina bought two shirts and two pairs of pants. How much did she pay? So she bought two shirts which is 100 \$ (looks down)


Idit's identity narratives at 9th grade

Idit: "The instant I get to a test it like, gives me a blackout, that I forget everything. Now, before the test, <u>I know all the material</u>, and- and I go over everything, I solve all the exercises in the book and I <u>know everything by heart</u>. And- and when I get to the test I have this, like suddenly this anxiety that makes me forget all the material."

Mother: "She has an expectation of herself too, (its) not just that she knows that we have an expectation (of her). But we don't come (.) or punish (her). She knows that we just care that her grades reflect what she knows, we know that she knows."

Idit's hypothesized widening failure

28/04/2022 14:41

Dana's hypothesized widening failure – probably started much earlier

Ritual Rou	itines	Explorative Routines	Widening of negative identity narratives
Discourse on algebra	nediation	Objectified mediation	Ritual participation in specific domain
	edures	Flexible procedures	
nscourse num	on _{rationale}	Internal authority/Agentivity	Negative feedback from teachers, tests,
F Disco	Urse -	Focused on the goal	HW Seeking "shortcuts" + Only
Unbon	numbers Discoul numbers between	Ponded ^{(Se} on ers 1-20	ritual OTLs

Researching ways to assess and intervene with FtLM

- The LATID project: Learning Algebra through Technology for devloping mathematical Identities
- The main problm:
 - If students arrive at 7th grade with a ritual arithmetic discourse how can they ever participate exploratively in the meta-arithmetic discourse = algebra?
- The solution:
 - By using Excel activities: Provide students with scaffolds to "bypass" the ritual routines in arithmetics, so they can participate exploratively in the discourse of algebra

Prof. Michal Tabach, Tel-Aviv University The LATID project: Learning Algebra through Technology for devloping mathematical Identities

- Four year project (Current: Year 2/4)
- Stages:
 - Develop diagnostic tools to assess arithmetic and early algebraic discourses
 - RDP aRithmatic Discourse Profile
 - EADP Early Algebra Discourse Profile
 - Intervene with Excel based activities
 - Measure the effectiveness of B with the tools developed in A, as well as through analysis of learning processes.

Developing diagnostic tools The aRithmetic Discourse Profile (RDP)

RQ: Based on tasks taken from elementary school curriculum, how can students' arithmetic discourse be characterized on the continuum between ritual and explorative participation?

Method

- 12 7th grade students (Heyd-Metzuyanim, 2011), interviewed on arithmetic tasks using a "think aloud" protocol
- 3 tasks chosen for the present analysis: 96+7935; 25x99; $\frac{2}{3} \times 9$
- Verbatim transcriptions
- 1st Step of analysis: dividng each routine into subroutines
- 2nd Step: determining ritual/explorative characteristics of the routine

Criteria of analysis for ritual-explorative routines

	Criterion	Analytical actions	Characteristics of an explorative routine	Characteristics of a ritual routine
:	 Objectified /syntactic mediation. 	Searching for evidence that the nouns signify numbers/quantities and not just the signifier of the number	In whole numbers, relating to the place value of the numeral. In fractions: relating to different realizations of the fraction as the same, including fraction as operator, part of whole, part of quantity, etc.	In whole numbers: relating to operations as signaling procedures on digits rather than on the whole number. In fractions, relating separately to the numerator and denominator.
	Plexibility	Look for multiple procedures that are associated with the same task.	More than one procedure is associated with the main task OR a non-standard procedure is applied to the task.	Relying on only one procedure while showing rigidity and reluctance to use any other procedure.
	Agency/External authority	Look for subjectifying discourse; examine verbs/pronouns and non-verbal signals that indicate the confidence.	Mathematizing with high confidence (no hesitations, question marks, no looking for approval). Spontaneously articulating mathematical narratives	Talking with question marks; Verbally or Non- verbally seeking approval from the interviewer; Relating to external authority for justification (e.g. "that's what I learned in school")
4	Focus on goal or on procedure	Look for verbs indicating doing (e.g. "I add") vs. being verbs indicating the result ("it is");	Talking about the result, checking it, or explaining it spontaneously	Talking about the actions of the procedure. Ending the procedure without relating to the reasonableness of the result.
	Bondedness	Examine the procedure; sub-procedures and the bonds between them.	Each sub-procedure feeds the next sub-procedure. The narrative of the result of sub-procedure N serves as the input of sub-procedure N+1.	There is a disconnect between a certain sub- procedure and its following one OR sub- procedures using different realizations are not treated as the same.

Findings – Ritual-exploration ratios and relative placement of the 12 students

Student	Achievement group	96+7935	25×99	$\frac{2}{3} \times 9$
		Ratio Ritual/Exploration	Ratio Ritual/Exploration	Ratio Ritual/Exploration
Dana	Low	6/4	8/2	7/3
Hili	Low	7/2	Not attempted	Not attempted
Hila	Low	7/3	7/1	Not attempted
Naor	Low	2/6	8/3	4/5
Edna	Middle-high	8/3	6/7	Not attempted
Idit	Middle-high	0/7 Explorativ	<mark>/e</mark> 6/5	7/4 Ritual
Dan	Middle-high	1/7	7/6 Ritual	2/6 Explorative
Ziv	Middle-high	3/6	3/8	2/6
Ram	Excelling	0/6	0/8	1/7
Gabby	Excelling	0/7	0/8	1/7
Yoram	Excelling	0/7	0/8	0/7
Amir	Excelling	0/7	1/8	0/8
Ritual 8/	0 🙀		<i>ૣ</i> 0/8	Explorative

28/04/2022 14:41

FtLM - Summary

The commognitive explanation of FtLM is theoretically robust, but accumulating empirical evidence is difficult

- Commognitive analysis is very work-intensive
- Demands longitudinal analysis over long periods of time, with very high engagement from participants

Ritual participation in

specific domain

"shortcuts" + Only ritual OTLs

eedback fron teachers, tests, HW Negative

Another challenges lies in the *incommensurability* of commognition with other "cognitivist" theories

• Without a "common language", building on previous studies that have used cognitivist theories is extremely difficult

Work in progress: a critical review with the aim of understanding how the highly fragmented literature on FtLM can be built upon and viewed through a discursive lens

Ben-Yehuda, M., Lavy, I., Linchevsky, L., & Sfard, A. (2005). Doing wrong with words: what bars students' access to arithmetical discourses. *Journal for Research in Mathematics Education*, *36*(3), 176–247.

Butterworth, B. (2005). The development of arithmetical abilities. *Journal of Child Psychology and Psychiatry and Allied Disciplines*, 46(1), 3–18. https://doi.org/10.1111/j.1469-7610.2004.00374.x

Dowker, A., Sarkar, A., & Looi, C. Y. (2016). Mathematics anxiety: What have we learned in 60 years? *Frontiers in Psychology*, 7(APR). https://doi.org/10.3389/fpsyg.2016.00508

Dowker, A. (2019). Individual Differences in Arithmetic (2nd ed.). Routledge.

Geary, D. C. (2011). Cognitive predictors of achievement growth in mathematics: A 5-year longitudinal study. *Developmental Psychology*, 47(6), 1539–1552. <u>https://doi.org/10.1037/a0025510</u>

Heyd-Metzuyanim, E. (2015). Vicious cycles of identifying and mathematizing: A case study of the development of mathematical failure. *Journal of the Learning Sciences*, 24(4), 504–549.

Lavie, I., Steiner, A., & Sfard, A. (2019). Routines we live by: from ritual to exploration. *Educational Studies in Mathematics*, 101(2), 153–176. https://doi.org/10.1007/s10649-018-9817-4

Ma, X. (1999). A meta-analysis of the relationship between anxiety toward mathematics and achievement in mathematics. *Journal for Research in Mathematics Education*, *30*(5), 520–541.

Martin, D. B. (2000). *Mathematics success and failure among African-American youth*. Lawrence Erlbaum Associates.

Ramirez, G., Shaw, S. T., & Maloney, E. A. (2018). Math anxiety: Past research, promising interventions, and a new interpretation framework. *Educational Psychologist*, *53*(3), 145–164. <u>https://doi.org/10.1080/00461520.2018.1447384</u>

Sfard, A. (2008). Thinking as communicating. Cambridge University Press.

Sfard, A., & Lavie, I. (2005). Why cannot children see as the same what grown-ups cannot see as different? — Early numerical thinking revisited. *Cognition and Instruction*, 23(2), 237–309.

Tan, P., Lambert, R., Padilla, A., & Wieman, R. (2019). A disability studies in mathematics education review of intellectual disabilities: Directions for future inquiry and practice. *Journal of Mathematical Behavior*, *54*. https://doi.org/10.1016/j.jmathb.2018.09.001