DIVISION 01 – GENERAL REQUIREMENTS

011000 – SCOPE OF WORK
017301 – CLEANING AND RESTORATIONS
017839 – AS BUILTS

DIVISION 05 – METALS

051200 – STRUCTURAL STEEL

DIVISION 23 – HEAT VENTILATING AND AIR CONDITIONING

230500 – COMMON WORK RESULT FOR HVAC
230513 – MOTORS
230517 – SLEEVES & SEALS FOR HVAC PIPING
230518 – ESCUTCHEONS FOR HVAC PIPING
230519 – METERS & GAUGES FOR HVAC PIPING
230529 – HANGERS AND SUPPORTS FOR MECHANICAL PIPING AND EQUIPMENT
230548 – VIBRATION & SEISMIC CONTROLS FOR HVAC PIPING & EQUIPMENT
230553 – IDENTIFICATION FOR HVAC PIPING & EQUIPMENT
230593 – TESTING, ADJUSTING & BALANCING
230700 – DUCT INSULATION
230719 – PIPE INSULATION
230993 – SEQUENCE OF OPERATIONS
232113 – HYDRONIC PIPING
233113 – METAL DUCTS
233300 – DUCTWORK ACCESSORIES
233713 – DIFFUSERS, REGISTERS & GRILLES
237413 – DEDICATED OUTDOOR AIR UNITS

DIVISION 26 – ELECTRICAL

260300 – ELECTRICAL DEMOLITION & RENOVATION
260500 – BASIC MEANS & METHODS
260513 - MEDIUM VOLTAGE CABLE
260519 – CONDUCTORS & CABLES
260526 – GROUNDING & BONDING
260529 – HANGERS & SUPPORTS
260533 – RACEWAYS & BOXES
260553 – ELECTRICAL IDENTIFICATION
262726 – WIRING DEVICES
262813 – FUSES
262816 – ENCLOSED SWITCHES & CIRCUIT BREAKERS
262913 – ENCLOSED CONTROLLERS
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 1 Specification Sections, apply to this Section.

1.2 WORK COVERED BY CONTRACT DOCUMENTS

A. The work on this project consists of the installation of new packaged 100% outside air makeup air units to support existing bathrooms. The contractor shall provide all ancillary work, including electrical, plumbing, structural, general construction, etc., as needed to complete the proposed work.

B. Project Phasing: In the event the contractor is not able to obtain the rooftop equipment and install the new rooftop units prior to the fall semester, the contractor shall comply with the following phasing plan with the project, no exceptions:

1. All submittals shall be submitted within 2 weeks of the issue of the NTP.

2. The contractor shall complete all interior work and roof penetrations prior to the start of the fall semester. This includes all saw cutting, demolition, piping, patch and repair, roofing, and all other associated work. The contractor may also install all other roof ductwork and roof piping at this time. The existing exhaust fans shall also remain operational. All interior work shall be completed so that the bathrooms can be occupied at the start of the fall semester. The contractor shall not perform invasive or other work that produces excessive noise during the fall semester. The contractor shall provide temporary water tight caps on all roof penetrations, duct openings, piping, etc.

3. Once the new rooftop units are delivered to the site and ready for installation, the contractor may proceed to install the units and all other work necessary to complete the project. The contractor shall perform this work over a scheduled University break at a time approved in advance with the University.

4. No additional payment shall be made to comply with this phasing plan. The contractor shall include all associated costs in his bid.

C. Base Bid & Alternates:

1. The Base Bid shall consist of all work associated with RTU-1 & RTU2, including all ductwork, piping, controls, patching/repair, electrical, structural, etc.

2. Alternate Bid #1 shall consist of work associated with RTU-2, including all ductwork, piping, controls, patching/repair, electrical, structural, etc.
D. **Controls**: The contractor shall provide seamless integration of the new rooftop units into the existing building management system. The contractor shall expand and modify the existing building management system as necessary to accommodate the new equipment. The contractor shall provide all control devices, wiring, programming, and all other work required and include in his bid all associated work required to integrate the new equipment. The existing control system is an Automated Logic WebCTRL system. The control system integration shall be performed by manufacturer certified technicians or other approved authorized agent. Dealers, distributors, and wholesalers of control products shall not be acceptable. The sequence of operation for the new units shall be as determined by the rooftop unit manufacturer. Modify existing system as required to accommodate the demolition of existing exhaust fans. Provide shop drawings consisting of schematic diagrams, control devices, sequences, and all other components and work to be provided.

E. The Contractor will be required to submit with their bid a proposed work schedule that shall be finalized to reflect actual project milestones after contract award. Strict adherence to the agreed upon final work schedule will be required for this project. The schedule shall be generated by the Contractor in a Microsoft Project TM 98 format and shall be updated weekly. Progress reports including the updated schedule (Gantt Chart) will be submitted to the Engineer on a weekly basis.

F. The areas of the facility affected by the new work shall not be without adequate ventilation, cooling, or heating at any time during the duration of the contract. Temporary ventilation/cooling/heating shall be supplied by the Contractor if this requirement cannot be met. The facility shall be occupied and operational throughout the duration of the contract and the Contractor shall be required to phase the installation of the new systems as needed to accommodate the Owner’s schedule and any off hour work required to comply with this requirement shall be included in the Contractor’s bid.

G. Contract Documents were prepared for the Project by Remington & Vernick Engineers, 232 Kings Highway East, Haddonfield, NJ 08033.

D. **General - The work consists of the following:**

The Contractor is responsible and obligated to successfully complete the entire project and to complete each and every necessary detail of every item specified and/or shown on the Contract Drawings and in the Specifications regardless of whether or not a particular detail is specifically mentioned. Any detail of work called out on the Drawings but not called out in the Specifications, or any item of work or detail not called out on the Drawings, but called out in the Specifications, shall be considered the same as if it was called out in both the Specifications and the Drawings. The scope of work shall include the following:

1. The Contractor is responsible for providing new and repairing existing architectural features and finishes including, but not limited to, walls, floors, roof, and ceiling systems as shown on the contract drawings and as required to complete the new work.

2. The Contractor is responsible for the demolition of the existing HVAC equipment and related accessories and the installation of new HVAC equipment and related accessories as shown on the contract drawings. Demolition and new work shall include all modifications to the existing equipment, systems, and structures;
piping and valves; mechanical equipment; and electrical equipment and systems; as shown on the drawings and as specified herein and as required to deliver complete and operational systems at no additional cost to the Owner.

3. The Contractor is responsible for patching and repairing the ceilings, walls and floors damaged or disturbed as a result of the demolition or new work. Provide structural repair of all roof or wall openings that are not to be reused. Restore finishes to a condition equal to or better than their original conditions. Provide additional structural supports for the new equipment and roof penetrations.

4. Provide new electrical conduit, wiring, disconnects, etc. as shown on the plans and as required to support the installation of the HVAC equipment. All new electrical work is to be in compliance with the Division 26 Specifications.

5. General:

1.) The furnishing and installation of all other appurtenances as shown on the drawings.

2.) The furnishing of all restoration specified herein required for a complete installation. Any interior or exterior finishes (roofs, ceilings, floors and walls) damaged during the installation of the equipment will be repaired/replaced with like materials to the satisfaction of the Owner.

3.) The work shall be in accordance with accepted standards. All demolition materials and scrap shall be disposed of in a legal manner and in accordance with all local, State and Federal or other agencies having jurisdiction.

4.) Any quantities shown on the drawings are for the convenience of the Contractor only. The Contractor shall field verify all existing dimensions prior to construction and/or preparation of shop drawings.

5.) The above Scope of Work outlines the general items and distribution of work and shall not be construed as being all-inclusive. The Contractor shall be responsible for applying for and obtaining any and all permits required to satisfactorily complete this construction project. Any costs related to obtaining permits shall be included in the proposal.

6.) Codes and Standards: The work as specified and performed for this project shall classify as “renovation work” and as such will comply with all applicable Renovation Sections of the State of New Jersey, Building Code. Where existing equipment is being replaced with new equipment, or wherever additions are made to the existing electrical and mechanical systems said work will comply with the latest revision of the NEC, NESC, LSC, UL, IBC, NSPC, IMC, IFGC, NFPA, ASME, ANSI or other applicable codes.

7.) Rebates: The Contractor shall be responsible for preparing and submitting all paperwork required to obtain any rebates under the New Jersey Smart Start Program.

1.3 WORK SEQUENCE
A. The Contractor is responsible for the demolition of the existing equipment, piping, valves, conduit, power cabling, controls and related accessories and the installation of new equipment, piping, valves, power cabling, controls and all related accessories as required to provide a complete and functional system. The work also includes all excavation, modifications to existing equipment, systems, and structures; piping and valves; mechanical equipment; control systems; and electrical equipment and systems, as shown on the drawings and as specified herein or as required to complete the new work. This Section includes scope of services to be performed:

B. The Contractor is responsible for verification of all existing dimensions and conditions in order to include all associated costs in the bid price for a complete installation as detailed in these specifications.

C. The above Scope of Work outlines the general items and distribution of work and shall not be construed as being all-inclusive. The contractor shall be responsible for applying for and obtaining any and all permits required to satisfactorily complete this construction project. Any costs related to obtaining permits shall be included in the proposal.

D. All contractors shall be responsible for coordinating their work with that of all other contractors on the project. Any costs related to his coordinating shall be included in the proposal.

E. Codes and Standards: The work as specified and performed for this project shall classify as “renovation work” and as such will comply with all applicable codes adopted in the State of New Jersey. Where existing equipment is being replaced with new equipment, or wherever additions are made to the existing electrical, mechanical, and plumbing systems said work will comply with the latest revision of the NEC, NESC, NFPA, LSC, UL, IMC, IBC, ASME, NSPC, ANSI or other applicable codes.

F. The quantities shown on the drawings are for the convenience of the contractor only. Items will be paid on a lump sum basis and no additional payment will be made if as-built quantities exceed plan quantities.

G. For the purpose of preparing progress schedules and estimates for payments to the Contractor, the Work to be performed under this Contract has been divided into lump sum and unit price items. The contractor is responsible and obligated to successfully complete the entire project and to complete each and every necessary detail of each and every item specified and/or shown on the contract drawings regardless of whether or not a particular detail is specifically mentioned. Any detail of work called out on the Drawings but not called out in the Specifications, or any item of work or detail not called out on the Drawings but called out in the Specifications, shall be considered the same as if it was called out in both the Specifications and the Drawings.

H. Only major items of work are given in the Bid Form, but it is the intent of the specifications to secure a completely interconnected and functioning system, and if any workmanship or materials be required which are obviously necessary to carry out the full intent and meaning of the plans and specifications or to be reasonably inferred therefrom, the cost of such workmanship or materials shall be included in the unit price bid for the major items of work.

I. The Contractor shall provide As-built drawings of the entire installation. As-builds shall be a reproducible of the original contract drawings including any additional sheets
required. All deviations from the original contract drawings shall be on the As-builds. The drawings shall be legible, neat and of a quality acceptable to the Engineer. Actual installation with all items clearly identified shall be indicated. Location of installed items and any deviations from contract documents shall be so shown with boxes around the as-built numbers or labels.

J. The Contractor is responsible to file and receive all permits for the project through the Township Construction Office (electrical, plumbing, etc.) All associated costs shall be included in the lump sum proposal bid price.

K. If and where directed items in the bidform shall only be utilized at the Owner/Engineers discretion.

1.4 CONTRACTOR USE OF PREMISES

A. General: During the construction period the Owner will occupy the site during construction. Contractor is not to interfere with Owner's Operations.

B. Use of the Site: Limit use of the premises to work in areas indicated. Confine operations to areas within contract limits indicated. Do not dig or disturb portions of the site beyond the areas in which the Work is indicated.

1. Driveways and Entrances: Keep driveways and entrances serving the premises clear and available to the Owner, the Owner's employees, and emergency vehicles at all times. Do not use these areas for parking or storage of materials. Schedule deliveries to minimize space and time requirements for storage of materials and equipment on-site.

1.5 OCCUPANCY REQUIREMENTS

A. Owner Occupancy: The Owner will occupy the site during the entire construction period. Cooperate with the Owner during construction operations to minimize conflicts and facilitate owner usage. Perform the Work so as not to interfere with the Owner's operations at no additional cost to the Owner. The Contractor shall be required to perform work off hours or on weekends as needed to meet the occupancy requirements of the Owner. Any costs related to this scheduled shall be included in the Contractor's bid.

B. The areas of the facility affected by the new work shall not be without ventilation, cooling or heating at any time as noted previously. The Contractor is advised that the building must have functional ventilation, cooling and heating to maintain occupancy. The Contractor will make provisions for this requirement in the proposal. In the event that temporary ventilation, cooling and heating is required during the course of this project, the contractor will provide a temporary measures to supply ventilation and heating to the building at no additional cost to the Owner.

PART 2 - PRODUCTS (Not Applicable)
PART 3 - EXECUTION (Not Applicable)

END OF SECTION 011000
SECTION 017301 – CLEANING AND RESTORATIONS

PART 1 - GENERAL

1.01 DESCRIPTION

A. Contractor shall provide all equipment, labor & materials required to clean and restore the site to at least the existing condition.

B. Maintain premises and public properties free from accumulations of waste, debris and rubbish caused by work operations.

C. At completion of work, remove waste materials, rubbish, tools, equipment, machinery and surplus materials; clean all sight exposed surfaces; leave project clean and ready for occupancy.

D. At completion of work, restore or replace, when and as directed by the Engineer, any public or private property disturbed or damaged by Contractor's work operations to a condition at least equal to that existing prior to beginning work, or as otherwise specified. Materials, equipment and methods shall be approved by the Engineer.

2.01 MATERIALS

A. For restorations all materials shall comply with the following Articles of the New Jersey Department of Transportation Standard Specifications latest revision and these specifications.

3.01 METHODS OF CONDUCTING WORK - CLEANING

A. Requirements of regulatory agencies:
 The Contractor shall comply with all Federal, State, and local anti-pollution laws, ordinances, codes and regulations when disposing of waste materials, debris and rubbish.

 All excess material shall be removed from the site and disposed of by the Contractor. Cost to be included in the unit price bid for all items. The disposal site shall be in permanently established licensed OSWA (Office of Solid Waste Administration, New Jersey Department of Environmental Protection) landfills or a NJDEP certified recycling center if applicable.

B. Cleaning during construction:

 Provide periodic cleaning to keep the work, the site, and adjacent properties free from accumulations of waste materials, rubbish and windblown debris resulting from construction operations.

 Provide on-site containers for the collection of waste materials, debris and rubbish. Maintain containers as required.

C. Dust Control:
The Contractor will be required to maintain all excavations, embankments, stockpiles, haul roads, permanent access roads, plant sites, waste areas, borrow areas, and all other work areas within or without the project boundaries free from dust which would cause a hazard or nuisance to others. Approved temporary methods of stabilization consisting of sprinkling, chemical treatment, light bituminous treatment or similar methods will be permitted to control dust. Sprinkling, to be approved, must be repeated at such intervals as to keep all parts of the disturbed area at least damp at all times, and the Contractor must have sufficient competent equipment on the job to accomplish this if sprinkling is used. Dust control shall be performed as the work proceeds and whenever a dust nuisance or hazard occurs. If any dust control is not done within twenty-four (24) hours after written notice is given by the Engineer, the work may be done by Owner and charged to the Contractor.

3.02 METHODS OF CONDUCTING WORK - RESTORATIONS

A. General: All existing structures, unpaved areas and paved areas disturbed or damaged during the work under this contract shall be restored or replaced to a condition at least equal to that existing prior to beginning work, or as otherwise specified. The methods of conducting this work shall, as a minimum, conform to the New Jersey Department of Transportation Standard Specifications, latest revision.

B. All Other Restorations:

Restore in accordance with applicable Sections of the Standard Specifications, or as approved by the Engineer or authorities having jurisdiction.

END OF SECTION
SECTION 017839 - AS-BUILT DRAWINGS

1.01 **GENERAL**

The Contractor shall provide a set of reproducible as-built drawings prior to final payment.

2.01 **MATERIALS**

A. As-builds shall be a reproducible of the original contract drawings including any additional sheets required. All deviations from the original contract drawings shall be on the as-builds. The drawings shall be legible, neat, and of a quality acceptable to the Engineer.

B. The Engineer shall provide a set of reproducibles at the beginning of the project.

3.01 **EXECUTION**

A. The Contractor shall be responsible for keeping the as-built up-to-date as the project progresses.

B. Building Construction: Actual installation with all items clearly identified shall be indicated. Location of installed items and any deviations from contract documents shall be so shown with boxes around the as-built numbers or labels.

C. This section is intended to provide a minimum level of acceptance. Any section with more stringent requirements shall have precedence over this section.

4.01 **PAYMENT**

No separate payment will be made for work performed under this section.

END OF SECTION
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes structural steel.

B. This Section includes structural steel and architecturally exposed structural steel.

1.3 SUBMITTALS

A. General: Submit each item in this Article according to the Conditions of the Contract and Division 1 Specification Sections.

B. Product Data for each type of product specified.

C. Shop Drawings detailing fabrication of structural steel components.
 1. Include details of cuts, connections, splices, camber, holes, and other pertinent data.
 2. Indicate welds by standard AWS symbols, distinguishing between shop and field welds, and show size, length, and type of each weld.
 3. Indicate type, size, and length of bolts, distinguishing between shop and field bolts. Identify high-strength bolted slip-critical, direct-tension, or tensioned shear/bearing connections.

D. Qualification data for firms and persons specified in the "Quality Assurance" Article to demonstrate their capabilities and experience. Include lists of completed projects with project names and addresses, names and addresses of architects and owners, and other information specified.

E. Mill test reports signed by manufacturers certifying that their products, including the following, comply with requirements.
 1. Structural steel, including chemical and physical properties.
 2. Bolts, nuts, and washers, including mechanical properties and chemical analysis.
 3. Shop primers.

1.4 QUALITY ASSURANCE
A. Installer Qualifications: Engage an experienced Installer who has completed structural steel work similar in material, design, and extent to that indicated for this Project and with a record of successful in-service performance.

B. Fabricator Qualifications: Engage a firm experienced in fabricating structural steel similar to that indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to fabricate structural steel without delaying the Work.

C. Comply with applicable provisions of the following specifications and documents:
 4. ASTM A 6 (ASTM A 6M) "Specification for General Requirements for Rolled Steel Plates, Shapes, Sheet Piling, and Bars for Structural Use."

D. Welding Standards: Comply with applicable provisions of AWS D1.1 "Structural Welding Code--Steel."
 1. Present evidence that each welder has satisfactorily passed AWS qualification tests for welding processes involved and, if pertinent, has undergone recertification.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Deliver structural steel to Project site in such quantities and at such times to ensure continuity of installation.

B. Store materials to permit easy access for inspection and identification. Keep steel members off ground by using pallets, platforms, or other supports. Protect steel members and packaged materials from erosion and deterioration.
 1. Store fasteners in a protected place. Clean and relubricate bolts and nuts that become dry or rusty before use.
 2. Do not store materials on structure in a manner that might cause distortion or damage to members or supporting structures. Repair or replace damaged materials or structures as directed.

1.6 SEQUENCING

A. Supply anchorage items to be embedded in or attached to other construction without delaying the Work. Provide setting diagrams, templates, instructions, and directions, as required, for installation.
PART 2 - PRODUCTS

2.1 MATERIALS

A. Structural Steel Shapes, Plates, and Bars: As follows:

B. Miscellaneous Steel Shapes, Bars, Plates & Angles: ASTM A 36. (ASTM A 36M).

C. Cold-Formed Structural Steel Tubing: ASTM A 500, Grade B.

D. Steel Pipe: ASTM A 53, Type E or S, Grade B.
 1. Weight Class: Standard.
 2. Finish: Galvanized.

E. Anchor Rods, Bolts, Nuts, and Washers: As follows:
 2. Headed Bolts: ASTM A 325. (ASTM A 325M), Type 1, heavy hex steel structural bolts and heavy hex carbon-steel nuts.

F. High-Strength Bolts, Nuts, and Washers: ASTM A 325. (ASTM A 325M), Type 1, heavy hex steel structural bolts, heavy hex carbon-steel nuts, and hardened carbon-steel washers.
 1. Finish: Hot-dip zinc-coating, ASTM A 153, Class C.

G. Welding Electrodes: Comply with AWS requirements.

2.2 PRIMER

A. Primer: Fast-curing, lead- and chromate-free, universal modified-alkyd primer with good resistance to normal atmospheric corrosion, complying with performance requirements of FS TT-P-664.

B. Galvanizing Repair Paint: High-zinc-dust-content paint for regalvanizing welds and repair painting galvanized steel, with dry film containing not less than 93 percent zinc dust by weight, and complying with DOD-P-21035A or SSPC-Paint 20.

2.3 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: Premixed, nonmetallic, noncorrosive, nonstaining grout containing selected silica sands, portland cement, shrinkage compensating agents, plasticizing and water-reducing agents, complying with ASTM C 1107, of consistency suitable for application, and a 30-minute working time.
2.4 FABRICATION

A. Fabricate and assemble structural steel in shop to greatest extent possible. Fabricate structural steel according to AISC specifications referenced in this Section and in Shop Drawings.

1. Camber structural steel members where indicated.
2. Identify high-strength structural steel according to ASTM A 6. (ASTM A 6M) and maintain markings until steel has been erected.
3. Mark and match-mark materials for field assembly.
4. Fabricate for delivery a sequence that will expedite erection and minimize field handling of structural steel.
5. Complete structural steel assemblies, including welding of units, before starting shop-priming operations.

B. Fabricate architecturally exposed structural steel with exposed surfaces smooth, square, and free of surface blemishes, including pitting, rust and scale seam marks, roller marks, rolled trade names, and roughness.

1. Remove blemishes by filling, grinding, or by welding and grinding, prior to cleaning, treating, and shop priming.
2. Comply with fabrication requirements, including tolerance limits, of AISC's "Code of Standard Practice for Steel Buildings and Bridges" for architecturally exposed structural steel.

C. Thermal Cutting: Perform thermal cutting by machine to greatest extent possible.

1. Plane thermally cut edges to be welded.

D. Finishing: Accurately mill ends of columns and other members transmitting loads in bearing.

E. Holes: Provide holes required for securing other work to structural steel framing and for passage of other work through steel framing members, as shown on Shop Drawings.

1. Cut, drill, or punch holes perpendicular to metal surfaces. Do not flame-cut holes or enlarge holes by burning. Drill holes in bearing plates.
2. Weld threaded nuts to framing and other specialty items as indicated to receive other work.

2.5 SHOP CONNECTIONS

A. Shop install and tighten nonhigh-strength bolts, except where high-strength bolts are indicated.

B. Shop install and tighten high-strength bolts according to RCSC’s "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts."

C. Weld Connections: Comply with AWS D1.1 for procedures, appearance and quality of welds, and methods used in correcting welding work.
1. Verify that weld sizes, fabrication sequence, and equipment used for architecturally exposed structural steel will limit distortions to allowable tolerances. Prevent surface bleeding of back-side welding on exposed steel surfaces. Grind smooth exposed fillet welds 1/2 inch (13 mm) and larger. Grind flush butt welds. Dress exposed welds.

2.6 SHOP PRIMING

A. Shop prime steel surfaces, except the following:
 1. Surfaces embedded in concrete or mortar. Extend priming of partially embedded members to a depth of 2 inches (50 mm).
 2. Surfaces to be field welded.

B. Surface Preparation: Clean surfaces to be painted. Remove loose rust, loose mill scale, and spatter, slag, or flux deposits. Prepare surfaces according to applicable SSPC specifications as follows in accordance with paint manufacturers requirements:
 1. SSPC-SP 2 "Hand Tool Cleaning."
 2. SSPC-SP 3 "Power Tool Cleaning."
 3. SSPC-SP 6 "Commercial Blast Cleaning."
 4. SSPC-SP 7 "Brush-Off Blast Cleaning."
 5. SSPC-SP 11 "Power Tool Cleaning to Bare Metal."

C. Priming: Immediately after surface preparation, apply primer according to manufacturer's instructions and at rate recommended by SSPC to provide a dry film thickness of not less than 1.5 mils (0.038 mm). Use priming methods that result in full coverage of joints, corners, edges, and exposed surfaces.

2.7 GALVANIZING

A. Hot-Dip Galvanized Finish: Apply zinc coating by the hot-dip process to structural steel indicated for galvanizing according to ASTM A 123.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Before erection proceeds, and with the steel erector present, verify elevations of concrete and masonry bearing surfaces and locations of anchorages for compliance with requirements.

B. Do not proceed with erection until unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Provide temporary shores, guys, braces, and other supports during erection to keep structural steel secure, plumb, and in alignment against temporary construction loads and loads equal in
intensity to design loads. Remove temporary supports when permanent structural steel, connections, and bracing are in place, unless otherwise indicated.

3.3 ERECTION

A. Set structural steel accurately in locations and to elevations indicated and according to AISC specifications referenced in this Section.

B.

C. Base and Bearing Plates: Clean concrete and masonry bearing surfaces of bond-reducing materials and roughen surfaces prior to setting base and bearing plates. Clean bottom surface of base and bearing plates.

1. Set base and bearing plates for structural members on wedges, shims, or setting nuts as required.
2. Tighten anchor bolts after supported members have been positioned and plumbed. Do not remove wedges or shims but, if protruding, cut off flush with edge of base or bearing plate prior to packing with grout.
3. Pack grout solidly between bearing surfaces and plates so no voids remain. Finish exposed surfaces, protect installed materials, and allow to cure.

D. Maintain erection tolerances of structural steel within AISC's "Code of Standard Practice for Steel Buildings and Bridges."

E. Align and adjust various members forming part of complete frame or structure before permanently fastening. Before assembly, clean bearing surfaces and other surfaces that will be in permanent contact. Perform necessary adjustments to compensate for discrepancies in elevations and alignment.

1. Level and plumb individual members of structure.

F. Splice members only where indicated.

G. Remove erection bolts on welded, architecturally exposed structural steel; fill holes with plug welds; and grind smooth at exposed surfaces.

H. Finish sections thermally cut during erection equal to a sheared appearance.

I. Do not enlarge unfair holes in members by burning or by using drift pins. Ream holes that must be enlarged to admit bolts.
3.4 FIELD CONNECTIONS

A. Install and tighten nonhigh-strength bolts, except where high-strength bolts are indicated.

B. Install and tighten high-strength bolts according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts."

C. Weld Connections: Comply with AWS D1.1 for procedures, appearance and quality of welds, and methods used in correcting welding work.

1. Comply with AISC specifications referenced in this Section for bearing, adequacy of temporary connections, alignment, and removal of paint on surfaces adjacent to field welds.

2. Verify that weld sizes, fabrication sequence, and equipment used for architecturally exposed structural steel will limit distortions to allowable tolerances. Prevent surface bleeding of back-side welding on exposed steel surfaces. Grind smooth exposed fillet welds 1/2 inch. (13 mm) and larger. Grind flush butt welds. Dress exposed welds.

3.5 CLEANING

A. Touchup Painting: Immediately after erection, clean field welds, bolted connections, and abraded areas of shop paint. Apply paint to exposed areas using same material as used for shop painting.

1. Apply by brush or spray to provide a minimum dry film thickness of 1.5 mils. (0.038 mm).

B. Galvanized Surfaces: Clean field welds, bolted connections, and abraded areas and apply galvanizing repair paint according to ASTM A 780.

END OF SECTION 051200
SECTION 230500 - COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:

1. Piping materials and installation instructions common to most piping systems.
2. Dielectric fittings.
3. Mechanical sleeve seals.
4. Sleeves.
5. Escutcheons.
7. HVAC demolition.
8. Equipment installation requirements common to equipment sections.
9. Concrete bases.
10. Supports and anchorages.

1.2 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and chases.

E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

1.3 SUBMITTALS

A. Welding certificates.

1.4 QUALITY ASSURANCE

A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."

B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

C. Electrical Characteristics for HVAC Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.5 ASSET DATA COLLECTION FORM

A. Contractor to submit asset data collection forms for all equipment once submittals are approved and before construction can begin. The form shall be a standardized form so that the data can be loaded into the Maximo system.

The Following is a list of equipment that the contractor should supply data for.

Mechanical systems
- Air Handling Units
- Variable Frequency Drives
- Fan Coil Units
- Exhaust Fans (Chemical and bathroom)
- Reheat Coil Units
- Unit Heaters
- Control Air Pressure station
- DX Cooling systems
- AC Split systems
- Building Fans
- VAV’s / CAV’s
- Meters
- Heating Hot Water and Chilled Water Pumps

B. Data fields/information

Sample Form

<table>
<thead>
<tr>
<th>Make</th>
<th>Warranty Date of Expiration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Belt Size & Quantity</td>
</tr>
<tr>
<td>Serial Number</td>
<td>Filter Size & Quantity</td>
</tr>
<tr>
<td>Area Served</td>
<td>Amperage</td>
</tr>
<tr>
<td>Installation Date (If known)</td>
<td>Voltage</td>
</tr>
<tr>
<td>Replacement Cost (Materials and Labor Estimate)</td>
<td>Actuator Type and Quantity</td>
</tr>
<tr>
<td>Useful / Nominal Life</td>
<td>Additional Operating Capacities (where applicable i.e HP, GPM, RPM, BTU etc.)</td>
</tr>
<tr>
<td>Location of Unit proper</td>
<td>Sub Systems (eg for AHUs =Supply fan, Return Fan, Coils, etc)</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Circuit power origination (Eg Panel and breaker the unit is fed from)</td>
</tr>
</tbody>
</table>

C. During Construction and Prior to Commissioning and MSU taking control of the Building

1. As Equipment is installed the physical location of all equipment identified shall be submitted and annotated on CAD drawings
2. Drawings or PDF files will be identified in such a way that for Plumbing equipment, only the floor plan with the plumbing layer being shown, and all other layers hidden. The same will be true for the mechanical, electrical etc.
3. Manufactures PM routine shall be submitted for all listed equipment along with the itemized list of consumables and quantities that are required to perform the Preventative Maintenance.
4. A list of recommended spare parts for all listed equipment.
5. Warranty information on all listed equipment.
6. Location of physical devices occluded from sight such as units in drop ceilings should be also identified in the field with a small red or blue sticker on the actual ceiling grid.

1.6 ITEMS NOT SHOWN OR SPECIFIED

A. Any item of material not indicated on the drawings and/or not specified, but which is required for the complete and proper installation and/or operation of any part of the work, shall be provided as if indicated and specified, at no additional cost to the Owner.

B. Any work not indicated on the drawings and/or not specified, but which is required for compliance with applicable codes and regulations, shall be provided as if indicated and specified, at no additional cost to the Owner.

PART 2 - PRODUCTS

2.1 PIPE, TUBE, AND FITTINGS

A. Refer to individual Division 23 piping Sections for pipe, tube, and fitting materials and joining methods.

B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.2 JOINING MATERIALS

A. Refer to individual Division 23 piping Sections for special joining materials not listed below.

B. Pipe-Flange Gasket Materials: ASME B16.21, nonmetallic, flat, asbestos-free, .1/8-inch maximum thickness unless thickness or specific material is indicated.

C. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.

D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

E. Brazing Filler Metals: AWS A5.8, BCuP Series or BAg1, unless otherwise indicated.

G. Solvent Cements for Joining Plastic Piping:

1. CPVC Piping: ASTM F 493.
2. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
2.3 DIELECTRIC FITTINGS

A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.

B. Insulating Material: Suitable for system fluid, pressure, and temperature.

C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig minimum working pressure at 180 deg F.

D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for .150- or 300-psig minimum working pressure as required to suit system pressures.

E. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.

F. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.

2.4 MECHANICAL SLEEVE SEALS

A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.

B. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.

C. Pressure Plates: Stainless steel. Include two for each sealing element.

D. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.5 SLEEVES

A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.

C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 1. Underdeck Clamp: Clamping ring with set screws.

E. Molded PVC: Permanent, with nailing flange for attaching to wooden forms.

G. Molded PE: Reusable, PE, tapered-cup shaped, and smooth-outer surface with nailing flange for attaching to wooden forms.
2.6 ESCUTCHEONS

A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.

B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.

C. One-Piece, Cast-Brass Type: With set screw.
 1. Finish: Polished chrome-plated

D. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.
 1. Finish: Polished chrome-plated

2.7 GROUT

A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 2. Design Mix: 30T 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HVAC DEMOLITION

A. Disconnect, demolish, and remove HVAC systems, equipment, and components indicated to be removed.
 1. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 2. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material.
 3. Ducts to Be Removed: Remove portion of ducts indicated to be removed and plug remaining ducts with same or compatible ductwork material.
 4. Ducts to Be Abandoned in Place: Cap or plug ducts with same or compatible ductwork material.
 5. Equipment to Be Removed: Disconnect and cap services and remove equipment.
 6. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
 7. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.

B. If pipe, insulation, or equipment to remain is damaged in appearance or is unserviceable, remove damaged or unserviceable portions and replace with new products of equal capacity and quality.
3.2 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 23 Sections specifying piping systems.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping to permit valve servicing.

G. Install piping at indicated slopes.

H. Install piping free of sags and bends.

I. Install fittings for changes in direction and branch connections.

J. Install piping to allow application of insulation.

K. Select system components with pressure rating equal to or greater than system operating pressure.

L. Install escutcheons for penetrations of walls, ceilings, and floors.

M. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.

N. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

1. Install steel pipe for sleeves smaller than 6 inches in diameter.
2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.
3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

O. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble
mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

P. Fire-BARRIER Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.

Q. Verify final equipment locations for roughing-in.

R. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.3 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.

H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

I. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 1. Comply with ASTM F 402, for safe-handling practice of cleaners, primers, and solvent cements.
 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 3. PVC Pressure Piping: Join schedule number ASTM D 1785, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule-number PVC pipe and socket fittings according to ASTM D 2855.
4. PVC Nonpressure Piping: Join according to ASTM D 2855.

J. Plastic Pressure Piping Gasketed Joints: Join according to ASTM D 3139.

K. Plastic Nonpressure Piping Gasketed Joints: Join according to ASTM D 3212.

L. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 1. Plain-End Pipe and Fittings: Use butt fusion.
 2. Plain-End Pipe and Socket Fittings: Use socket fusion.

M. Fiberglass Bonded Joints: Prepare pipe ends and fittings, apply adhesive, and join according to pipe manufacturer's written instructions.

3.4 PIPING CONNECTIONS

A. Make connections according to the following, unless otherwise indicated:
 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.

3.5 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.

B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.

C. Install HVAC equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.

D. Install equipment to allow right of way for piping installed at required slope.

3.6 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.
 1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
5. Install anchor bolts to elevations required for proper attachment to supported equipment.
6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
7. Use 3000-psi, 28-day compressive-strength concrete and reinforcement

3.7 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Refer to Division 05 Section "Metal Fabrications" for structural steel.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor HVAC materials and equipment.

C. Field Welding: Comply with AWS D1.1.

3.8 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor HVAC materials and equipment.

B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.

C. Attach to substrates as required to support applied loads.

3.9 GROUTING

A. Mix and install grout for HVAC equipment base bearing surfaces, pump and other equipment base plates, and anchors.

B. Clean surfaces that will come into contact with grout.

C. Provide forms as required for placement of grout.

D. Avoid air entrapment during placement of grout.

E. Place grout, completely filling equipment bases.

F. Place grout on concrete bases and provide smooth bearing surface for equipment.

G. Place grout around anchors.

H. Cure placed grout.

END OF SECTION
SECTON 230513 - MOTORS

1.1 GENERAL

A. Definitions:
 1. Factory-Installed Motor: A motor installed by motorized-equipment manufacturer as a component of equipment.

B. Submittals:
 1. Product Data for each type and size of motor, including nameplate data and ratings; size type, and location of winding terminations; conduit entry and ground lug locations; and information on coatings or finishes.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

D. Comply with NFPA 70.

1.2 PRODUCTS

A. Motor Requirements:
 1. Motor requirements apply to factory-installed motors except as follows:
 a. Different ratings, performance, or characteristics for a motor are specified in another Section.
 b. Manufacturer for a factory-installed motor requires ratings, performance, or characteristics, other than those specified in this Section, to meet performance specified.

B. Motor Characteristics:
 1. Motors 1/2 HP and Larger: Three phase.
 3. Frequency Rating: 60 Hz.
 4. Voltage Rating as specified on schedules.
 5. Enclosure: ODP or TEFC.

C. Polyphase Motors: NEMA MG 1, Design B, medium induction motor.
 1. Efficiency: Premium efficiency
 2. Stator: Copper windings, unless otherwise indicated.
 a. Multispeed motors shall have separate winding for each speed.
 3. Rotor: Squirrel cage, unless otherwise indicated.
 4. Bearings: Double-shielded, prelubricated ball bearings suitable for radial and thrust loading.
 5. Temperature Rise: Match insulation rating, unless otherwise indicated.
6. **Insulation:** Class F, unless otherwise indicated.

7. **Code Letter Designation:**
 a. **Motors Smaller Than 15 HP:** Manufacturer's standard starting characteristic.

8. **Enclosure:** TEFC. Cast iron for motors 10 hp and larger; rolled steel for motors smaller than 10 hp.
 a. **Finish:** enamel.

D. **Polyphase Motors with Additional Requirements:**

1. **Motors Used with Reduced-Inrush Controllers:** Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

2. **Source Quality Control:** Perform the following tests on each motor according to NEMA MG 1:
 a. Measure winding resistance.
 b. Read no-load current and speed at rated voltage and frequency.
 c. Measure locked rotor current at rated frequency.
 d. Perform high-potential test.

E. **Single-Phase Motors:**

1. One of the following, to suit starting torque and requirements of specific motor application:
 a. Permanent-split capacitor.
 b. Split-phase start, capacitor run.
 c. Capacitor start, capacitor run.

2. **Shaded-Pole Motors:** For motors 1/20 hp and smaller only.
3. **Thermal Protection:** Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.
4. **Bearings:** Ball type for belt-connected motors and other motors with high radial forces on motor shaft; sealed, prelubricated-sleeve type for other single-phase motors.
5. **Source Quality Control:** Perform the following tests on each motor according to NEMA MG 1:
 a. Measure winding resistance.
 b. Read no-load current and speed at rated voltage and frequency.
 c. Measure locked rotor current at rated frequency.
 d. Perform high-potential test.

1.3 **EXECUTION**

A. **Field Quality Control:**

1. Prepare for acceptance tests as follows:
a. Run each motor with its controller. Demonstrate correct rotation, alignment, and speed at motor design load.
b. Test interlocks and control features for proper operation.
c. Verify that current in each phase is within nameplate rating.

2. Testing: Perform the following field quality-control testing:
 a. Perform visual and mechanical inspection stated in NETA ATS, Section 7.15.1.
 b. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units.

B. Adjusting: Align motors, bases, shafts, pulleys and belts. Tension belts according to manufacturer's written instructions.

END OF SECTION
SECTION 230517 - SLEEVES AND SLEEVE SEALS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Sleeves.
 2. Stack-sleeve fittings.
 3. Sleeve-seal systems.
 4. Sleeve-seal fittings.
 5. Grout.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.

C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

E. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

F. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

G. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.
2.2 STACK-SLEEVE FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Zurn Specification Drainage Operation; Zurn Plumbing Products Group.
3. Or Approved Equal

B. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.

 1. Underdeck Clamp: Clamping ring with setscrews.

2.3 SLEEVE-SEAL SYSTEMS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Advance Products & Systems, Inc.
2. CALPICO, Inc.
3. Metraflex Company (The).
4. Pipeline Seal and Insulator, Inc.
5. Proco Products, Inc.
6. Or Approved Equal

B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.

 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
2. Pressure Plates: Carbon steel.
3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.4 SLEEVE-SEAL FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:

1. Presealed Systems.
2. Or Approved Equal

B. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.
2.5 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.

1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.

1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
2. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
3. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.

1. Cut sleeves to length for mounting flush with both surfaces.
2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Division 07 Section "Joint Sealants."

E. Fire-BARRIER Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."

3.2 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.
1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.

2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Division 07 Section "Sheet Metal Flashing and Trim."

3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.

4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.

5. Using grout, seal the space around outside of stack-sleeve fittings.

B. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Division 07 Section "Penetration Firestopping."

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.4 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

3.5 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Exterior Concrete Walls above Grade:
 b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves.

2. Exterior Concrete Walls below Grade:
 a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves with sleeve-seal system.
1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves with sleeve-seal system.

1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

3. Concrete Slabs-on-Grade:

a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves with sleeve-seal system.

1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves with sleeve-seal system

1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

4. Concrete Slabs above Grade:

b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves.

5. Interior Partitions:

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.3 SUBMITTALS
A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS
A. One-Piece, Cast-Brass Type: With polished, chrome-plated and rough-brass finish and setscrew fastener.
B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.
D. Split-Casting Brass Type: With polished, chrome-plated and rough-brass finish and with concealed hinge and setscrew.
E. Split-Plate, Stamped-Steel Type: With chrome-plated finish, concealed and exposed-rivet hinge, and spring-clip fasteners.

2.2 FLOOR PLATES
A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.
B. Split-Casting Floor Plates: Cast brass with concealed hinge.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 g. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 h. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated or rough-brass finish.
 i. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 j. Bare Piping in Equipment Rooms: One-piece, cast-brass or split-casting brass type with polished, chrome-plated or rough-brass finish.
 k. Bare Piping in Equipment Rooms: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. New Piping: One-piece, floor-plate type.
2. Existing Piping: Split-casting, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION
SECTION 230519 - METERS AND GAGES FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Bimetallic-actuated thermometers.
 2. Filled-system thermometers.
 4. Thermowells.
 5. Dial-type pressure gages.
 7. Test plugs.
 8. Test-plug kits.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Wiring Diagrams: For power, signal, and control wiring.

C. Product Certificates: For each type of meter and gage, from manufacturer.

D. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 BIMETALLIC-ACTUATED THERMOMETERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:

 1. Ashcroft Inc.
 2. Ernst Flow Industries.
 3. Marsh Bellofram.
 8. REOTEMP Instrument Corporation.
10. Trerice, H. O. Co.
11. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
12. Weiss Instruments, Inc.
13. WIKA Instrument Corporation - USA.
14. Winters Instruments - U.S.
15. Or Approved Equal

C. Case: Liquid-filled and sealed type(s); stainless steel with 5-inch nominal diameter.

D. Dial: Nonreflective aluminum with permanently etched scale markings and scales in \(^\circ\)F.

E. Connector Type(s): Union joint, adjustable angle with unified-inch screw threads.

F. Connector Size: \(\frac{1}{2}\) inch, with ASME B1.1 screw threads.

G. Stem: 0.25 or 0.375 inch in diameter; stainless steel.

H. Window: Plain glass.

I. Ring: Stainless steel.

J. Element: Bimetal coil.

K. Pointer: Dark-colored metal.

L. Accuracy: Plus or minus 1 percent of scale range.

2.2 FILLED-SYSTEM THERMOMETERS

A. Direct-Mounted, Metal-Case, Vapor-Actuated Thermometers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ashcroft Inc.
 b. Marsh Bellofram.
 c. Miljoco Corporation.
 e. REOTEMP Instrument Corporation.
 f. Trerice, H. O. Co.
 g. Weiss Instruments, Inc.
 h. Or Approved Equal

3. Case: Sealed type, cast aluminum or drawn steel; 5-inch nominal diameter.
4. Element: Bourdon tube or other type of pressure element.
5. Movement: Mechanical, dampening type, with link to pressure element and connection to pointer.
6. Dial: Nonreflective aluminum with permanently etched scale markings graduated in \(^\circ\)F.
8. Window: Glass.
10. Connector Type(s): Union joint, adjustable, 180 degrees in vertical plane, 360 degrees in horizontal plane; with ASME B1.1 screw threads.
11. Thermal System: Liquid-filled bulb in copper-plated steel, aluminum, or brass stem and of length to suit installation.
 b. Design for Thermowell Installation: Bare stem.
12. Accuracy: Plus or minus 1 percent of scale range.

2.3 LIQUID-IN-GLASS THERMOMETERS

A. Metal-Case, Compact-Style, Liquid-in-Glass Thermometers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Trerice, H. O. Co.
 b. Or Approved Equal

3. Case: Cast aluminum; 6-inch nominal size.
4. Case Form: Straight unless otherwise indicated.
5. Tube: Glass with magnifying lens and blue organic liquid.
6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F.
7. Window: Glass or plastic.
8. Stem: Aluminum or brass and of length to suit installation.
 b. Design for Thermowell Installation: Bare stem.

10. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

B. Metal-Case, Industrial-Style, Liquid-in-Glass Thermometers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:
 a. Flo Fab Inc.
 b. Miljoco Corporation.
 d. Tel-Tru Manufacturing Company.
 e. Trerice, H. O. Co.
 f. Weiss Instruments, Inc.
 g. Winters Instruments - U.S.
 h. Or Approved Equal

3. Case: Cast aluminum; 7-inch nominal size unless otherwise indicated.
4. Case Form: Adjustable angle, Back angle or Straight unless otherwise indicated.
5. Tube: Glass with magnifying lens and blue organic liquid.
6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F.
7. Window: Glass.
8. Stem: Aluminum and of length to suit installation.
 b. Design for Thermowell Installation: Bare stem.
10. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.4 DUCT-THERMOMETER MOUNTING BRACKETS
A. Description: Flanged bracket with screw holes, for attachment to air duct and made to hold thermometer stem.

2.5 THERMOWELLS
A. Thermowells:
 2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
 3. Material for Use with Copper Tubing: CNR or CUNI.
 4. Material for Use with Steel Piping: CRES or CSA.
 5. Type: Stepped shank unless straight or tapered shank is indicated.
 6. External Threads: NPS 1/2, NPS 3/4, or NPS 1, ASME B1.20.1 pipe threads.
 7. Internal Threads: 1/2, 3/4, and 1 inch, with ASME B1.1 screw threads.
 8. Bore: Diameter required to match thermometer bulb or stem.
 9. Insertion Length: Length required to match thermometer bulb or stem.
 10. Lagging Extension: Include on thermowells for insulated piping and tubing.
 11. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.

B. Heat-Transfer Medium: Mixture of graphite and glycerin.

2.6 PRESSURE GAGES
A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers.
 a. AMETEK, Inc.; U.S. Gauge.
 b. Ashcroft Inc.
 c. Ernst Flow Industries.
 d. Flo Fab Inc.
 e. Marsh Bellofram.
 f. Miljoco Corporation.
 g. Noshok.
h. Palmer Wahl Instrumentation Group.
i. REOTEMP Instrument Corporation.
j. Tel-Tru Manufacturing Company.
k. Treice, H. O. Co.
l. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
m. Weiss Instruments, Inc.
n. WIKA Instrument Corporation - USA.
o. Winters Instruments - U.S.
p. Or Approved Equal

3. Case: Liquid-filled; cast aluminum or drawn steel; 4-1/2-inch nominal diameter.
4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
5. Pressure Connection: Brass, with NPS 1/4, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
6. Movement: Mechanical, with link to pressure element and connection to pointer.
7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
11. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.

B. Remote-Mounted, Metal-Case, Dial-Type Pressure Gages:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:

 a. AMETEK, Inc.; U.S. Gauge.
 b. Ashcroft Inc.
 c. Ernst Flow Industries.
 d. Flo Fab Inc.
 e. Marsh Bellofram.
 f. Miljoco Corporation.
 g. Noshok.
 h. Palmer Wahl Instrumentation Group.
 i. REOTEMP Instrument Corporation.
 j. Tel-Tru Manufacturing Company.
 k. Treice, H. O. Co.
 l. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
 m. Weiss Instruments, Inc.
 n. WIKA Instrument Corporation - USA.
 o. Winters Instruments - U.S.
 p. Or Approved Equal

3. Case: Liquid-filled type; cast aluminum; 4-1/2-inch nominal diameter with back flange and holes for panel mounting.
4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
5. Pressure Connection: Brass, with NPS 1/4, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
6. Movement: Mechanical, with link to pressure element and connection to pointer.
7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
11. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.

2.7 GAGE ATTACHMENTS

A. Snubbers: ASME B40.100, brass; with NPS 1/4, ASME B1.20.1 pipe threads and piston porous-metal-type surge-dampening device. Include extension for use on insulated piping.

B. Siphons: Loop-shaped section of brass stainless-steel pipe with NPS 1/4 pipe threads.

C. Valves: Brass ball with NPS 1/4, ASME B1.20.1 pipe threads.

2.8 TEST PLUGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Flow Design, Inc.
4. Peterson Equipment Co., Inc.
5. Sisco Manufacturing Company, Inc.
6. Trerice, H. O. Co.
7. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
8. Weiss Instruments, Inc.
9. Or Approved Equal

B. Description: Test-station fitting made for insertion into piping tee fitting.

C. Body: Brass or stainless steel with core inserts and gasketed and threaded cap. Include extended stem on units to be installed in insulated piping.

D. Thread Size: NPS 1/4, ASME B1.20.1 pipe thread.

E. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F.

F. Core Inserts: Chlorosulfonated polyethylene synthetic and EPDM self-sealing rubber.

2.9 TEST-PLUG KITS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Flow Design, Inc.
4. Peterson Equipment Co., Inc.
5. Sisco Manufacturing Company, Inc.
6. Trerice, H. O. Co.
7. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
8. Weiss Instruments, Inc.
9. Or Approved Equal
B. Furnish one test-plug kit(s) containing two thermometer(s), one pressure gage and adapter, and carrying case. Thermometer sensing elements, pressure gage, and adapter probes shall be of diameter to fit test plugs and of length to project into piping.

C. Low-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inch- diameter dial and tapered-end sensing element. Dial range shall be at least 25 to 125 deg F.

D. High-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inch- diameter dial and tapered-end sensing element. Dial range shall be at least 0 to 220 deg F.

E. Pressure Gage: Small, Bourdon-tube insertion type with 2- to 3-inch- diameter dial and probe. Dial range shall be at least 0 to 200 psig.

F. Carrying Case: Metal or plastic, with formed instrument padding.

2.10 SIGHT FLOW INDICATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:

1. Archon Industries, Inc.
2. Dwyer Instruments, Inc.
4. Ernst Co., John C., Inc.
5. Ernst Flow Industries.
6. KOBOLD Instruments, Inc. - USA; KOBOLD Messring GmbH.
7. OPW Engineered Systems; a Dover company.
8. Penberthy; A Brand of Tyco Valves & Controls - Prophetstown.
9. Or Approved Equal

B. Description: Piping inline-installation device for visual verification of flow.

C. Construction: Bronze or stainless-steel body, with sight glass and ball, flapper, or paddle wheel indicator, and threaded or flanged ends.

D. Minimum Pressure Rating: 150 psig.

E. Minimum Temperature Rating: 200 deg F.

F. End Connections for NPS 2 and Smaller: Threaded.

G. End Connections for NPS 2-1/2 and Larger: Flanged.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install thermowells with socket extending to center of pipe and in vertical position in piping tees.

B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.

C. Install thermowells with extension on insulated piping.
D. Fill thermowells with heat-transfer medium.
E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.
F. Provide an additional two temperature gauges and two pressure gauges to be used as directed by the Engineer.
G. Install remote-mounted thermometer bulbs in thermowells and install cases on panels; connect cases with tubing and support tubing to prevent kinks. Use minimum tubing length.
H. Install duct-thermometer mounting brackets in walls of ducts. Attach to duct with screws.
I. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.
J. Install remote-mounted pressure gages on panel.
K. Install valve and snubber in piping for each pressure gage for fluids (except steam).
L. Install valve and syphon fitting in piping for each pressure gage for steam.
M. Install test plugs in piping tees.
N. Install permanent indicators on walls or brackets in accessible and readable positions.
O. Install connection fittings in accessible locations for attachment to portable indicators.
P. Install thermometers in the following locations:
 1. Outside-, return-, supply-, and mixed-air ducts.

3.2 ADJUSTING
A. After installation, calibrate meters according to manufacturer’s written instructions.
B. Adjust faces of meters and gages to proper angle for best visibility.

3.3 THERMOMETER SCHEDULE
A. Thermometers at inlets and outlets of each hydronic heat exchanger shall be the following:
 1. Liquid-filled, bimetallic-actuated type.
B. Thermometers at inlet and outlet of each thermal-storage tank shall be the following:
 1. Liquid-filled, bimetallic-actuated type.
C. Thermometers at outside-, return-, supply-, and mixed-air ducts shall be the following:
 1. Sealed, bimetallic-actuated type.
D. Thermometer stems shall be of length to match thermowell insertion length.
3.4 THERMOMETER SCALE-RANGE SCHEDULE

A. Scale Range for Air Ducts: 0 to 100 deg F.

3.5 PRESSURE-GAGE SCHEDULE

A. Pressure gages at discharge of each pressure-reducing valve shall be[one of] the following:
 1. Liquid-filled or Sealed direct-mounted, metal case.

B. Pressure gages at inlet and outlet of each chiller chilled-water and condenser-water connection shall be one of the following:
 1. Liquid-filled direct mounted, metal case.

C. Pressure gages at suction and discharge of each pump shall be[one of] the following:
 1. Liquid-filled, direct-mounted, metal case.

END OF SECTION
SECTION 220529 - HANGERS AND SUPPORTS FOR MECHANICAL PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Metal pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Fiberglass pipe hangers.
 4. Metal framing systems.
 5. Fiberglass strut systems.
 6. Thermal-hanger shield inserts.
 7. Fastener systems.
 8. Pipe stands.
 9. Pipe positioning systems.
 10. Equipment supports.

1.3 DEFINITIONS
A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS
A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
 3. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.
1.5 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following; include Product Data for components:

 1. Trapeze pipe hangers.
 2. Metal framing systems.
 3. Fiberglass strut systems.
 4. Pipe stands.
 5. Equipment supports.

C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

 1. Detail fabrication and assembly of trapeze hangers.
 2. Design Calculations: Calculate requirements for designing trapeze hangers.

D. Welding certificates.

1.6 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:

 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

B. Stainless-Steel Pipe Hangers and Supports:

 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

C. Copper Pipe Hangers:
1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
2. Hanger Rods: Continuous-thread rod, nuts, and washer made of stainless steel

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 FIBERGLASS PIPE HANGERS

A. Clevis-Type, Fiberglass Pipe Hangers:
 1. Description: Similar to MSS SP-58, Type 1, steel pipe hanger except hanger is made of fiberglass or fiberglass-reinforced resin.
 2. Hanger Rods: Continuous-thread rod, washer, and nuts made of stainless steel

B. Strap-Type, Fiberglass Pipe Hangers:
 1. Description: Similar to MSS SP-58, Type 9 or Type 10, steel pipe hanger except hanger is made of fiberglass-reinforced resin.
 2. Hanger Rod and Fittings: Continuous-thread rod, washer, and nuts made of stainless steel

2.4 METAL FRAMING SYSTEMS

A. MFMA Manufacturer Metal Framing Systems:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.
 c. Flex-Strut Inc.
 d. GS Metals Corp.
 e. Thomas & Betts Corporation.
 f. Unistrut Corporation; Tyco International, Ltd.
 g. Wesanco, Inc.
 h. Or Approved Equal
 2. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
 4. Channels: Continuous slotted steel channel with inturned lips.
 5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
 6. Hanger Rods: Continuous-thread rod, nuts, and washer made of stainless steel
 7. Metallic Coating: Electroplated zinc
2.5 THERMAL-HANGER SHIELD INSERTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Carpenter & Paterson, Inc.
3. ERICO International Corporation.
5. PHS Industries, Inc.
6. Pipe Shields, Inc.; a subsidiary of Piping Technology & Products, Inc.
7. Piping Technology & Products, Inc.
8. Rilco Manufacturing Co., Inc.
9. Value Engineered Products, Inc.
10. Or Approved Equal

B. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig minimum compressive strength and vapor barrier.

C. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 552, Type II cellular glass with 100-psig minimum compressive strength.

D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.6 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, stainless-steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.7 PIPE STANDS

A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

B. Compact Pipe Stand: One-piece plastic unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.

C. Low-Type, Single-Pipe Stand: One-piece stainless-steel base unit with plastic roller, for roof installation without membrane penetration.

D. High-Type, Single-Pipe Stand:
1. Description: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.

E. High-Type, Multiple-Pipe Stand:
1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
2. Bases: One or more; plastic.
3. Vertical Members: Two or more protective-coated-steel channels.
4. Horizontal Member: Protective-coated-steel channel.
5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.

F. Curb-Mounting-Type Pipe Stands: Shop- or field-fabricated pipe supports made from structural-steel shapes, continuous-thread rods, and rollers, for mounting on permanent stationary roof curb.

2.8 PIPE POSITIONING SYSTEMS
A. Description: IAPMO PS 42, positioning system of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.9 EQUIPMENT SUPPORTS
A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.10 MISCELLANEOUS MATERIALS
A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.
B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION
3.1 HANGER AND SUPPORT INSTALLATION
A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrangement for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.

1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Fiberglass Pipe-Hanger Installation: Comply with applicable portions of MSS SP-69 and MSS SP-89. Install hangers and attachments as required to properly support piping from building structure.

D. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.

E. Fiberglass Strut System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled fiberglass struts.

F. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

G. Fastener System Installation:

1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches (100 mm) thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

H. Pipe Stand Installation:

1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. See Division 07 Section "Roof Accessories" for curbs.

I. Pipe Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture. See Division 22 plumbing fixture Sections for requirements for pipe positioning systems for plumbing fixtures.

J. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

L. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

M. Install lateral bracing with pipe hangers and supports to prevent swaying.
N. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

O. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

P. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

Q. Insulated Piping:
 1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
 5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
 6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.
3.3 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:

1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09 painting Sections.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel metal trapeze pipe hangers and metal framing systems and attachments for general service applications.

F. Use stainless-steel pipe hangers and stainless-steel attachments for hostile environment applications.

G. Use copper-plated pipe hangers and copper or stainless-steel attachments for copper piping and tubing.

H. Use padded hangers for piping that is subject to scratching.

I. Use thermal-hanger shield inserts for insulated piping and tubing.

J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to .1050 deg F pipes NPS 4 to NPS 24 requiring up to 4 inches of insulation.
3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36 requiring clamp flexibility and up to 4 inches of insulation.
4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4 to allow off-center closure for hanger installation before pipe erection.
6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36 with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36 with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30. from two rods if longitudinal movement caused by expansion and contraction might occur.
18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24 from single rod if horizontal movement caused by expansion and contraction might occur.

19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.

20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.

21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.

K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
a. Light (MSS Type 31): 750 lb
b. Medium (MSS Type 32): 1500 lb
c. Heavy (MSS Type 33): 3000 lb

13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

N. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

O. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:

 a. Horizontal (MSS Type 54): Mounted horizontally.
 b. Vertical (MSS Type 55): Mounted vertically.
 c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.

P. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

Q. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

R. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.
S. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

END OF SECTION
SECTION 230548 - VIBRATION AND SEISMIC CONTROLS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the contract, including general and supplementary conditions and Division 1 specification sections, apply to this section.

1.2 SUMMARY

A. Provide seismic restraints and supports for all mechanical equipment, piping, plumbing, and fire protection in accordance with the International Building Code, NFPA-13, SMACNA and standard practice.

B. Provide vibration isolators on all piping, ductwork, and equipment. All ductwork and piping shall be installed with spring isolator hangers.

C. The materials and systems specified in this section shall be purchased by the mechanical contractor from a single vibration isolation / snubber restraint materials manufacturer to assure sole source responsibility for the performance of the vibration support system used.

D. The materials and systems specified in this section can, at the contractor’s option, be installed by the subcontractor who installs the mechanical equipment, piping, or ductwork.

1.3 SUBMITTALS:

A. Product Data: Include load deflection curves for each vibration isolation device.

B. Shop Drawings: Include the following:

1. Design Calculations: Calculate requirements for selecting seismic restraints, vibration isolators and for vibration isolation bases. All calculations shall be signed and sealed by a professional Engineer licensed in the state of New Jersey.

2. Product Data: Include Vibration Rating Data for each vibration rated isolator or restraint component.

3. Samples: The contractor shall submit samples of specified vibration isolators / snubber devices upon request of the engineer for approval.

4. Submit shop drawings for all devices specified herein and as indicated and scheduled on the drawings. Submittals shall indicate full compliance with the device specification in Part 2. Any deviation shall be specifically noted and subject to engineer approval. Submittals shall include device dimensions, placement, attachments and anchorage requirements. Shop Drawings shall include the following:

a. Vibration Isolation Bases: Dimensional drawings including anchorage and attachments to structure and to supported equipment, if needed or required. Include auxiliary motor slides and rails, base weights, equipment static loads.

b. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
1.6 COORDINATION

A. Coordinate size, shape, reinforcement and attachment of all housekeeping pads supporting vibration isolated equipment. Concrete shall have a minimum compressive strength of 3,000 psi or as specified by the project engineer. (Also see requirements in the seismic / wind portion of this spec).

B. Coordinate with vibration isolation restraint manufacturer and the structural engineer of record to locate and size structural supports underneath vibration isolated restrained equipment (e.g. roof curbs, cooling towers, chillers and other similar equipment).

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 VIBRATION ISOLATORS

A. Manufacturers:
 1. Kinetics Noise Control, Inc.
 2. Mason Industries, Inc.
 3. Amber/Booth Company, Inc.
 4. Or Approved Equal

2.3 VIBRATION ISOLATION: Materials and systems specified herein and detailed or scheduled on the drawings are based upon materials manufactured by Kinetics Noise Control, Inc. Materials and systems provided by other manufacturers are acceptable pending engineering written approval, provided that they meet all requirements as listed in this specification.

A. Springs: All springs shall have a minimum additional travel to solid equal to 50% of the rated deflection. All springs except internal nested springs shall have an outside diameter not less than 0.8 of the compressed height of the spring. Ends of springs shall be square and ground for stability. Laterally stable springs shall have k_x/k_y ratios of at least 0.9. All springs shall be fully color-coded to indicate capacity – color striping is not considered adequate.

B. Corrosion Protection: All springs shall be powder-coated enamel. Housings shall be galvanized, powder-coated enamel, or painted with rust-resistant paint. Hot-dipped galvanized housings shall be provided as indicated on the Schedule.

C. Steel Equipment Base: Bases shall be of welded construction with cross members to form an integral support platform. Structural steel members shall be designed to match supported equipment. Steel Equipment Base shall be Model SFB, as manufactured by Kinetics Noise Control, Inc. or equivalent.

 1. Vibration bases for fans shall have adjustable motor slide rails as indicated on their Schedule, and shall accommodate motor overhang.
2. Bases for exterior use shall be painted or hot-dipped galvanized for complete corrosion resistance.

3. Minimum clearance under steel equipment bases shall be 25mm (1”).

4. Air Handler Equipment bases shall be supported by no fewer than 6 spring isolators along each side of the base.

D. Isolators:

1. Restrained Spring Floor Mounted Isolators: Type FLS – Vibration isolators for equipment which is subject to load variations and large external or torquing forces shall consist of large diameter laterally stable steel springs assembled into formed or welded steel housing assemblies designed to limit vertical movement of the supported equipment. Springs shall be supported either with a neoprene cup of a metal base plate complete with a ribbed neoprene pad, minimum 6 mm (0.25”) thick, bonded to the base plate. Springs shall have a lateral stiffness greater than 0.8 times the rated vertical stiffness and shall be designed to provide up to 50% overload capacity. Springs shall be selected to provide operating static deflections of 2.5”. Springs shall be color coded or otherwise identified to indicate load capacity. In capacities up to 5,000 lbs., springs shall be replaceable. In capacities over 5,000 lbs., springs shall be welded to the top and bottom load plate assemblies. Housing assembly shall be formed or fabricated steel members and shall consist of a top-load plate complete with adjusting and leveling bolts, vertical restraints, isolation washers and a bottom plate with non-skid noise stop pads and holes provided for anchoring to supporting structure. Housing shall be hot dipped galvanized. Spring elements shall meet all the specified characteristics described in Section 2.1/E.1 paragraph. Vibration isolators shall be Model FLS, as manufactured by Kinetics Noise Control, Inc or equivalent.

2. Spring Hangers: Vibration isolator hanger supports with steel springs and welded steel housings. The hanger bracket shall be designed to carry a 500% overload without failure and to allow a support rod misalignment through a 30-degree arc without metal-to-metal contact or other short circuit. Hangers serving lightweight loads 0.90 kN (200 lbs) and less may be exempt from this requirement. (When used in a seismic application(s), a vertical limit stop washer sized to fit the hanger rod is to be provided by others)

a. Vibration isolators for suspended equipment with minimum static deflection requirement exceeding .4”, and where both high and low frequency vibrations are to be isolated, shall be hangers consisting of a laterally stable steel spring in series with a molded oil-resistant neoprene insert, complete with load transfer plates and assembled in stamped or welded steel bracket. The spring element shall meet all the specified characteristics described in Section 2.1/E.1 paragraph. The stamped or welded hanger bracket shall meet all the specified characteristics described in Section 2.1/E.7 paragraph. The combination isolation hanger assembly with neoprene inserts shall be Model SRH, as manufactured by Kinetics Noise Control, Inc. or equivalent.

2.4 FACTORY FINISHES

A. Manufacturer’s standard prime-coat finish ready for field painting.
B. Finish: Manufacturer’s standard paint applied to factory-assembled and tested equipment before shipping.
 1. Powder coating on springs and housings.
 2. All hardware shall be electrogalvanized. Hot-dip galvanize metal components for exterior use.
 3. Baked enamel for metal components on isolators for interior use.
 4. Color-code or otherwise mark vibration isolation and seismic-control devices to indicate capacity range.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements, installation tolerances, and other conditions affecting performance.

B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install thrust limits at centerline of thrust, symmetrical on either side of equipment.

B. Install resilient bolt isolation washers on equipment anchor bolts.

C. Installation of all vibration isolation materials and supplemental equipment bases specified in this section shall be accomplished as per the manufacturer’s written instructions and adjust mountings to level equipment.

D. On completion of installation of all isolation materials and before startup of isolated equipment all debris shall be cleared from areas surrounding and from beneath all isolated equipment, leaving equipment free to move on the isolation supports.

E. No rigid connections between equipment and building structure shall be made that degrades the noise and vibration isolation system herein specified. Electrical conduit connections to isolated equipment shall be looped to allow free motion of isolated equipment.

F. Ensure pipe, duct and electrical connections to isolated equipment do not reduce system flexibility. Ensure that pipe, conduit and duct passing through walls and floors do not transmit vibrations.

G. Unless indicated otherwise, piping connected to isolated equipment shall be isolated as follows:
 1. Up to (NPS) 4” Diameter: first 3 points of support. (NPS) 5” Diameter to (NPS) 8” Diameter: first 4 points of support. (NPS) 10” Diameter and Over: first 6 points of support
 2. First point of support shall have a static deflection equal to the deflection of isolated equipment; with a maximum of 2” (50 mm). Subsequent support points shall have a static deflection no less than 1” (25mm).
3. First point of support shall have a static deflection equal to the deflection of isolated equipment; with a maximum of 2" (50 mm). Subsequent support points shall have a static deflection no less than 1" (25mm).
4. Deflection shall be not less than that for the equipment to which the piping is connected.
5. Block and shim level bases so that the ductwork and piping connections can be made to a rigid system at the operating level, before isolator adjustment is made. Ensure that there is no physical contact between isolated equipment and building structure.

3.3 FIELD QUALITY CONTROL

A. The contractor shall notify the local representative of the vibration isolation materials manufacturer prior to installing any vibration isolation devices. The contractor shall seek the representative's guidance in any installation procedures with which he is unfamiliar.

B. The local representative of the vibration isolation materials manufacturer shall conduct periodic inspections of the installation of materials herein specified, and shall report in writing to the contractor any deviations from good installation practice observed.

C. On completion of installation of all noise and vibration isolation devices herein specified, the local representative of the isolation materials manufacturer shall (only upon request as required) inspect the completed system and report in writing any installation errors, improperly selected isolation devices, or other fault in the system that could affect the performance of the system.

3.4 ADJUSTING

A. Adjust isolators after piping systems have been filled and equipment is at operating weight.

B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

C. Attach thrust limits at centerline of thrust and adjust to a maximum of 3/4-inch movement during start and stop.

D. Adjust active height of spring isolators.

3.5 CLEANING

A. After completing equipment installation, inspect vibration isolation and seismic-control devices. Remove paint splatters and other spots, dirt, and debris.

3.2 VIBRATION ISOLATION INSPECTION

A. The contractor shall notify the local representative of the vibration isolation materials manufacturer prior to installing any vibration isolation devices. The contractor shall seek the representative's guidance in any installation procedures with which he is unfamiliar.
B. The local representative of the vibration isolation materials manufacturer shall conduct periodic inspections of the installation of materials herein specified, and shall report in writing to the contractor any deviations from good installation practice observed.

C. On completion of installation of all noise and vibration isolation devices herein specified, the local representative of the isolation materials manufacturer shall (only upon request as required) inspect the completed system and report in writing any installation errors, improperly selected isolation devices, or other fault in the system that could affect the performance of the system.

END OF SECTION
SECTION 230553 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Equipment labels.
 2. Warning signs and labels.
 3. Pipe labels.
 4. Duct labels.
 5. Stencils.
 6. Valve tags.
 7. Warning tags.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Samples: For color, letter style, and graphic representation required for each identification material and device.

C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.

D. Valve numbering scheme.

E. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.
PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:

1. Material and Thickness: Stainless steel, 0.025-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
3. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Label Content: Include equipment’s Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.

C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.

B. Letter Color: White

C. Background Color: Red

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Label Content: Include caution and warning information, plus emergency notification instructions.
2.3 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: At least 1-1/2 inches high.

2.4 DUCT LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.

C. Background Color: Black.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings, duct size, and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions, or as separate unit on each duct label to indicate flow direction.
 2. Lettering Size: At least 1-1/2 inches high.

2.5 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
1. Tag Material: Stainless steel, 0.025-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Fasteners: Brass beaded chain.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

2.6 WARNING TAGS
A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.

1. Size: Approximately 4 by 7 inches
2. Fasteners: Brass grommet and wire
3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."

PART 3 - EXECUTION

3.1 PREPARATION
A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION
A. Install or permanently fasten labels on each major item of mechanical equipment.
B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION
A. Piping Color-Coding: Painting of piping is specified in Division 09 Section "Interior Painting".
B. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

C. Pipe Label Color Schedule:

1. Refrigerant Piping:
 a. Background Color: Black.
 b. Letter Color: Yellow.

3.4 DUCT LABEL INSTALLATION

A. Install plastic-laminated duct labels with permanent adhesive on air ducts in the following color codes:

1. Blue For cold-air supply ducts.
2. Yellow For hot-air supply ducts.
3. Green For exhaust-, outside-, relief-, return-, and mixed-air ducts.
4. ASME A13.1 Colors and Designs: For hazardous material exhaust.

B. Locate labels near points where ducts enter into concealed spaces and at maximum intervals of 50 feet in each space where ducts are exposed or concealed by removable ceiling system.

3.5 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:

1. Valve-Tag Size and Shape:
 a. Refrigerant: 2 inches, round.

2. Valve-Tag Color:
 a. Refrigerant: Black.

3. Letter Color:

3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION
SECTION 230593 - TESTING, ADJUSTING, AND BALANCING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes testing, adjusting, and balancing HVAC systems to produce design objectives, including the following:

1. Balancing airflow and water flow within new distribution systems, including submains, branches, and terminals, to indicated quantities according to specified tolerances.
2. Adjusting total HVAC systems to provide indicated quantities.
4. Verifying that automatic control devices are functioning properly.
5. Measuring sound and vibration.
6. Reporting results of the activities and procedures specified in this Section.

B. Related Sections include the following:

1. Testing and adjusting requirements unique to particular systems and equipment are included in the Sections that specify those systems and equipment.
2. Field quality-control testing to verify that workmanship quality for system and equipment installation is specified in system and equipment Sections.

1.3 DEFINITIONS

A. Adjust: To regulate fluid flow rate and air patterns at the terminal equipment, such as to reduce fan speed or adjust a damper.

B. Balance: To proportion flows within the distribution system, including submains, branches, and terminals, according to design quantities.

C. Draft: A current of air, when referring to localized effect caused by one or more factors of high air velocity, low ambient temperature, or direction of airflow, whereby more heat is withdrawn from a person's skin than is normally dissipated.

D. Procedure: An approach to and execution of a sequence of work operations to yield repeatable results.

E. Report Forms: Test data sheets for recording test data in logical order.
F. Static Head: The pressure due to the weight of the fluid above the point of measurement. In a closed system, static head is equal on both sides of the pump.

G. Suction Head: The height of fluid surface above the centerline of the pump on the suction side.

H. System Effect: A phenomenon that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.

I. System Effect Factors: Allowances used to calculate a reduction of the performance ratings of a fan when installed under conditions different from those presented when the fan was performance tested.

J. Terminal: A point where the controlled medium, such as fluid or energy, enters or leaves the distribution system.

K. Test: A procedure to determine quantitative performance of a system or equipment.

L. Testing, Adjusting, and Balancing Agent: The entity responsible for performing and reporting the testing, adjusting, and balancing procedures.

O. CTI: Cooling Tower Institute.

P. NEBB: National Environmental Balancing Bureau.

Q. SMACNA: Sheet Metal and Air Conditioning Contractors' National Association.

1.4 SUBMITTALS

A. Quality-Assurance Submittals: Within 30 days from the Contractor's Notice to Proceed, submit 2 copies of evidence that the testing, adjusting, and balancing Agent and this Project's testing, adjusting, and balancing team members meet the qualifications specified in the "Quality Assurance" Article below.

B. Certified Testing, Adjusting, and Balancing Reports: Submit 2 copies of reports prepared, as specified in this Section, on approved forms certified by the testing, adjusting, and balancing Agent.

C. Sample Report Forms: Submit 2 sets of sample testing, adjusting, and balancing report forms.

D. Warranty: Submit 2 copies of special warranty specified in the "Warranty" Article below.
1.5 QUALITY ASSURANCE

A. Agent Qualifications: Engage a testing, adjusting, and balancing agent certified by NEBB.

B. Certification of Testing, Adjusting, and Balancing Reports: Certify testing, adjusting, and balancing field data reports. This certification includes the following:

1. Review field data reports to validate accuracy of data and to prepare certified testing, adjusting, and balancing reports.
2. Certify that testing, adjusting, and balancing team complied with approved testing, adjusting, and balancing plan and procedures specified and referenced in this Specification.

C. Testing, Adjusting, and Balancing Reports: Use standard forms from NEBB's "National Standards for Testing, Adjusting, and Balancing."

D. Instrumentation Type, Quantity, and Accuracy: As described in NEBB national standards.

E. Instrumentation Calibration: Calibrate instruments at least every six months or more frequently if required by the instrument manufacturer.

1.6 PROJECT CONDITIONS

A. Full Owner Occupancy: The Owner will occupy the site during the entire testing, adjusting, and balancing period. Cooperate with the Owner during testing, adjusting, and balancing operations to minimize conflicts with the Owner's operations.

1.7 COORDINATION

A. Coordinate the efforts of factory-authorized service representatives for systems and equipment, HVAC controls installers, and other mechanics to operate HVAC systems and equipment to support and assist testing, adjusting, and balancing activities.

B. Notice: Provide 7 days' advance notice for each test. Include scheduled test dates and times.

C. Perform testing, adjusting, and balancing after leakage and pressure tests on air distribution systems have been satisfactorily completed.

1.8 WARRANTY

A. General Warranty: The national project performance guarantee specified in this Article shall not deprive the Owner of other rights the Owner may have under other provisions
of the Contract Documents and shall be in addition to, and run concurrent with, other warranties made by the Contractor under requirements of the Contract Documents.

B. National Project Performance Guarantee: Provide a guarantee on NEBB'S "National Standards" forms stating that NEBB will assist in completing the requirements of the Contract Documents if the testing, adjusting, and balancing Agent fails to comply with the Contract Documents. Guarantee includes the following provisions:

1. The certified Agent has tested and balanced systems according to the Contract Documents.
2. Systems are balanced to optimum performance capabilities within design and installation limits.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine Contract Documents to become familiar with project requirements and to discover conditions in systems' designs that may preclude proper testing, adjusting, and balancing of systems and equipment.

1. Contract Documents are defined in the General and Supplementary Conditions of the Contract.
2. Verify that balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers, are required by the Contract Documents. Verify that quantities and locations of these balancing devices are accessible and appropriate for effective balancing and for efficient system and equipment operation.

B. Examine approved submittal data of HVAC systems and equipment.

C. Examine project record documents described in Division 1 Section "Project Record Documents."

D. Examine Engineer's design data, including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.

E. Examine equipment performance data, including fan and pump curves. Relate performance data to project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system. Calculate system effect factors to reduce the performance ratings of HVAC equipment when installed under conditions different from those presented when the equipment was performance tested at the factory. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems,"
Sections 7 through 10; or in SMACNA's "HVAC Systems--Duct Design," Sections 5 and 6. Compare this data with the design data and installed conditions.

F. Examine system and equipment installations to verify that they are complete and that testing, cleaning, adjusting, and commissioning specified in individual Specification Sections have been performed.

G. Examine system and equipment test reports.

H. Examine HVAC system and equipment installations to verify that indicated balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers, are properly installed, and their locations are accessible and appropriate for effective balancing and for efficient system and equipment operation.

I. Examine systems for functional deficiencies that cannot be corrected by adjusting and balancing.

J. Examine air-handling equipment to ensure clean filters have been installed, bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.

K. Examine heat-transfer coils for correct piping connections and for clean and straight fins.

L. Examine equipment for installation and for properly operating safety interlocks and controls.

M. Examine automatic temperature system components to verify the following:
 1. Dampers, valves, and other controlled devices operate by the intended controller.
 2. Dampers and valves are in the position indicated by the controller.
 3. Integrity of valves and dampers for free and full operation and for tightness of fully closed and fully open positions.
 4. Automatic modulating and shutoff valves, including 2-way valves and 3-way mixing and diverting valves, are properly connected.
 5. Thermostats and humidistats are located to avoid adverse effects of sunlight, drafts, and cold walls.
 6. Sensors are located to sense only the intended conditions.
 7. Sequence of operation for control modes is according to the Contract Documents.
 8. Controller set points are set at design values. Observe and record system reactions to changes in conditions. Record default set points if different from design values.
 9. Interlocked systems are operating.
 10. Changeover to cooling mode occurs according to design values.

N. Report deficiencies discovered before and during performance of testing, adjusting, and balancing procedures.
3.2 PREPARATION

A. Prepare a testing, adjusting, and balancing plan that includes strategies and step-by-step procedures.

B. Complete system readiness checks and prepare system readiness reports. Verify the following:
 1. Permanent electrical power wiring is complete.
 2. Automatic temperature-control systems are operational.
 3. Equipment and duct access doors are securely closed.
 4. Balance and fire dampers are open.
 5. Isolating and balancing valves are open and control valves are operational.
 6. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
 7. Windows and doors can be closed so design conditions for system operations can be met.

3.3 GENERAL TESTING AND BALANCING PROCEDURES

A. Perform testing and balancing procedures on each system according to the procedures contained in NEBB national standards and this Section.

B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary to allow adequate performance of procedures. After testing and balancing, close probe holes and patch insulation with new materials identical to those removed. Restore vapor barrier and finish according to the insulation Specifications for this Project.

C. Mark equipment settings with paint or other suitable, permanent identification material, including damper-control positions, valve indicators, fan-speed-control levers, and similar controls and devices, to show final settings.

3.4 FUNDAMENTAL AIR SYSTEMS' BALANCING PROCEDURES

A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.

B. Prepare schematic diagrams of systems' "as-built" duct layouts.

C. Determine the best locations in main and branch ducts for accurate duct airflow measurements.

D. Check the airflow patterns from the outside-air louvers and dampers and the return-and exhaust-air dampers, through the supply-fan discharge and mixing dampers.
E. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

F. Verify that motor starters are equipped with properly sized thermal protection.

G. Check dampers for proper position to achieve desired airflow path.

H. Check for airflow blockages.

I. Check condensate drains for proper connections and functioning.

J. Check for proper sealing of air-handling unit components.

3.5 VARIABLE-AIR-VOLUME SYSTEMS’ ADDITIONAL PROCEDURES

A. Compensating for Diversity: When the total airflow of all terminal units is more than the fan design airflow volume, place a selected number of terminal units at a maximum set-point airflow condition until the total airflow of the terminal units equals the design airflow of the fan. Select the reduced airflow terminal units so they are distributed evenly among the branch ducts.

B. Pressure-Independent, Variable-Air-Volume Systems: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:

1. Set outside-air dampers at minimum, and return- and exhaust-air dampers at a position that simulates full-cooling load.
2. Select the terminal unit that is most critical to the supply-fan airflow and static pressure. Measure static pressure. Adjust system static pressure so the entering static pressure for the critical terminal unit is not less than the sum of the terminal unit manufacturer’s recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge duct losses.
3. Measure total system airflow. Adjust to within 10 percent of design airflow.
4. Set terminal units at maximum airflow and adjust controller or regulator to deliver the designed maximum airflow. Use the terminal unit manufacturer's written instructions to make this adjustment. When total airflow is correct, balance the air outlets downstream from terminal units as described for constant-volume air systems.
5. Set terminal units at minimum airflow and adjust controller or regulator to deliver the designed minimum airflow. Check air outlets for a proportional reduction in airflow as described for constant-volume air systems.
 a. If air outlets are out of balance at minimum airflow, report the condition but leave the outlets balanced for maximum airflow.
6. Remeasure the return airflow to the fan while operating at maximum return airflow and minimum outside airflow. Adjust the fan and balance the return-air ducts and inlets as described for constant-volume air systems.
7. Measure static pressure at the most critical terminal unit and adjust the static-pressure controller at the main supply-air sensing station to ensure adequate static pressure is maintained at the most critical unit.
8. Record the final fan performance data.
C. Pressure-Dependent, Variable-Air-Volume Systems without Diversity: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:

1. Balance systems similar to constant-volume air systems.
2. Set terminal units and supply fan at full-airflow condition.
3. Adjust inlet dampers of each terminal unit to design airflow and verify operation of the static-pressure controller. When total airflow is correct, balance the air outlets downstream from terminal units as described for constant-volume air systems.
4. Readjust fan airflow for final maximum readings.
5. Measure operating static pressure at the sensor that controls the supply fan, if one is installed, and verify operation of the static-pressure controller.
6. Set supply fan at minimum airflow if minimum airflow is indicated. Measure static pressure to verify that it is being maintained by the controller.
7. Set terminal units at minimum airflow and adjust controller or regulator to deliver the designed minimum airflow. Check air outlets for a proportional reduction in airflow as described for constant-volume air systems.
 a. If air outlets are out of balance at minimum airflow, report the condition but leave the outlets balanced for maximum airflow.
8. Measure the return airflow to the fan while operating at maximum return airflow and minimum outside airflow. Adjust the fan and balance the return-air ducts and inlets as described for constant-volume air systems.

D. Pressure-Dependent, Variable-Air-Volume Systems with Diversity: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:

1. Set system at maximum design airflow by setting the required number of terminal units at minimum airflow. Select the reduced airflow terminal units so they are distributed evenly among the branch ducts.
2. Adjust supply fan to maximum design airflow with the variable-airflow controller set at maximum airflow.
3. Set terminal units being tested at full-airflow condition.
4. Adjust terminal units starting at the supply-fan end of the system and continuing progressively to the end of the system. Adjust inlet dampers of each terminal unit to design airflow. When total airflow is correct, balance the air outlets downstream from terminal units as described for constant-volume air systems.
5. Adjust terminal units for minimum airflow.
6. Measure static pressure at the sensor.
7. Measure the return airflow to the fan while operating at maximum return airflow and minimum outside airflow. Adjust the fan and balance the return-air ducts and inlets as described for constant-volume air systems.

3.6 MOTORS

A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:

1. Manufacturer, model, and serial numbers.
4. Efficiency rating if high-efficiency motor.
5. Nameplate and measured voltage, each phase.
6. Nameplate and measured amperage, each phase.
7. Starter thermal-protection-element rating.

3.7 HEAT-TRANSFER COILS

A. Coils: Measure the following data for each coil:

1. Dry-bulb and wet-bulb temperatures of entering and leaving air.
2. Airflow.
3. Air pressure drop.

3.8 TEMPERATURE TESTING

A. During testing, adjusting, and balancing, report need for adjustment in temperature regulation within the automatic temperature-control system.

B. Measure indoor wet- and dry-bulb temperatures every other hour for a period of 2 successive 8-hour days, in each separately controlled zone, to prove correctness of final temperature settings. Measure when the building or zone is occupied.

C. Measure outside-air, wet- and dry-bulb temperatures.

3.9 TEMPERATURE-CONTROL VERIFICATION

A. Verify that controllers are calibrated and commissioned.

B. Check transmitter and controller locations and note conditions that would adversely affect control functions.

C. Record controller settings and note variances between set points and actual measurements.

D. Verify operation of limiting controllers (i.e., high- and low-temperature controllers).

E. Verify free travel and proper operation of control devices such as damper and valve operators.

F. Verify sequence of operation of control devices. Note air pressures and device positions and correlate with airflow and water-flow measurements. Note the speed of response to input changes.

G. Confirm interaction of electrically operated switch transducers.

H. Confirm interaction of interlock and lockout systems.
I. Record voltages of power supply and controller output. Determine if the system operates on a grounded or nongrounded power supply.

J. Note operation of electric actuators using spring return for proper fail-safe operations.

3.10 TOLERANCES

A. Set HVAC system airflow and water flow rates within the following tolerances:
 1. Supply, Return, and Exhaust Fans: Plus 5 to plus 10 percent.
 2. Air Outlets and Inlets: 0 to minus 10 percent.

3.11 REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article above, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

B. Status Reports: As Work progresses, prepare reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.12 FINAL REPORT

A. General: Typewritten, or computer printout in letter-quality font, on standard bond paper, in 3-ring binder, tabulated and divided into sections by tested and balanced systems.

B. Include a certification sheet in front of binder signed and sealed by the certified testing and balancing engineer.
 1. Include a list of the instruments used for procedures, along with proof of calibration.

C. Final Report Contents: In addition to the certified field report data, include the following:
 1. Fan curves.
 2. Manufacturers' test data.
 3. Field test reports prepared by system and equipment installers.
 4. Other information relative to equipment performance, but do not include approved Shop Drawings and Product Data.

D. General Report Data: In addition to the form titles and entries, include the following data in the final report, as applicable:
1. Title page.
2. Name and address of testing, adjusting, and balancing Agent.
3. Project name.
4. Project location.
5. Architect's name and address.
6. Engineer's name and address.
7. Contractor's name and address.
9. Signature of testing, adjusting, and balancing Agent who certifies the report.
10. Summary of contents, including the following:
 a. Design versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.
11. Nomenclature sheets for each item of equipment.
12. Data for terminal units, including manufacturer, type size, and fittings.
13. Notes to explain why certain final data in the body of reports vary from design values.
14. Test conditions for fans and pump performance forms, including the following:
 a. Settings for outside-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Cooling coil, wet- and dry-bulb conditions.
 d. Fan drive settings, including settings and percentage of maximum pitch diameter.
 e. Other system operating conditions that affect performance.

E. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present with single-line diagrams and include the following:
1. Quantities of outside, supply, return, and exhaust airflows.
2. Duct, outlet, and inlet sizes.
3. Pipe and valve sizes and locations.

F. Air-Handling Unit Test Reports: For air-handling units with coils, include the following:
1. Unit Data: Include the following:
 a. Unit identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer’s serial number.
 f. Unit arrangement and class.
 g. Discharge arrangement.
 h. Sheave make, size in inches, and bore.
 i. Sheave dimensions, center-to-center and amount of adjustments in inches.
j. Number of belts, make, and size.
k. Number of filters, type, and size.

2. Motor Data: Include the following:
 a. Make and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Sheave dimensions, center-to-center and amount of adjustments in inches (mm).

3. Test Data: Include design and actual values for the following:
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Filter static-pressure differential in inches wg.
 f. Cooling coil static-pressure differential in inches wg.
 g. Outside airflow in cfm.
 h. Return airflow in cfm.
 i. Outside-air damper position.
 j. Return-air damper position.

G. Apparatus-Coil Test Reports: For apparatus coils, include the following:

1. Coil Data: Include the following:
 a. System identification.
 b. Location.
 c. Coil type.
 d. Number of rows.
 e. Fin spacing in fins per inch.
 f. Make and model number.
 g. Face area in sq. ft.
 h. Tube size in NPS.
 i. Tube and fin materials.
 j. Circuiting arrangement.

2. Test Data: Include design and actual values for the following:
 a. Airflow rate in cfm.
 b. Average face velocity in fpm.
 c. Air pressure drop in inches wg.
 d. Outside-air, wet- and dry-bulb temperatures in deg F.
 e. Return-air, wet- and dry-bulb temperatures in deg F.
 f. Entering-air, wet- and dry-bulb temperatures in deg F.
 g. Leaving-air, wet- and dry-bulb temperatures in deg F.
H. Fan & Pump Test Reports: Include the following:

1. Fan Data: Include the following:
 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and size.
 e. Manufacturer's serial number.
 f. Arrangement and class.
 g. Sheave make, size in inches, and bore.
 h. Sheave dimensions, center-to-center and amount of adjustments in inches.

2. Motor Data: Include the following:
 a. Make and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Sheave dimensions, center-to-center and amount of adjustments in inches.
 g. Number of belts, make, and size.

3. Test Data: Include design and actual values for the following:
 a. Total airflow/waterflow rate in cfm.
 b. Total system static/head pressure in inches wg.
 c. Fan rpm.
 d. Discharge static/head pressure in inches wg.
 e. Suction static/head pressure in inches wg.

I. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a
 grid representing the duct cross-section and record the following:

1. Report Data: Include the following:
 a. System and air-handling unit number.
 b. Location and zone.
 c. Traverse air temperature in deg F.
 d. Duct static pressure in inches wg.
 e. Duct size in inches.
 f. Duct area in sq. ft.
 g. Design airflow rate in cfm.
 h. Design velocity in fpm.
 i. Actual airflow rate in cfm.
 j. Actual average velocity in fpm.
 k. Barometric pressure in psig.

J. Air-Terminal-Device Reports: For terminal units, include the following:
1. Unit Data: Include the following:
 a. System and air-handling unit identification.
 b. Location and zone.
 c. Test apparatus used.
 d. Area served.
 e. Air-terminal-device make.
 f. Air-terminal-device number from system diagram.
 g. Air-terminal-device type and model number.
 h. Air-terminal-device size.
 i. Air-terminal-device effective area in sq. ft.

2. Test Data: Include design and actual values for the following:
 a. Airflow rate in cfm.
 b. Air velocity in fpm.
 c. Preliminary airflow rate as needed in cfm.
 d. Preliminary velocity as needed in fpm.
 e. Final velocity in fpm.
 f. Space temperature in deg F.

3.13 ADDITIONAL TESTS

A. Within 90 days of completing testing, adjusting, and balancing, perform additional testing and balancing to verify that balanced conditions are being maintained throughout and to correct unusual conditions.

B. Seasonal Periods: If initial testing, adjusting, and balancing procedures were not performed during near-peak summer and winter conditions, perform additional inspections, testing, and adjusting during near-peak summer and winter conditions.

END OF SECTION
SECTION 230700 - DUCT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes semirigid and flexible duct, plenum, and breeching insulation; insulating cements; field-applied jackets; accessories and attachments; and sealing compounds. Contractor to provide insulation and accessories for all new and existing duct.
 B. Related Sections include the following:
 1. Section "Pipe Insulation" for insulation for piping systems.
 2. Section "Metal Ducts" for insulation associated with double wall spiral ductwork.

1.3 SUBMITTALS
 A. Product Data: Identify thermal conductivity, thickness, and jackets (both factory and field applied, if any), for each type of product indicated.
 B. Shop Drawings: Show fabrication and installation details for the following:
 1. Removable insulation sections at access panels.
 2. Application of field-applied jackets.
 3. Applications at linkages for control devices.
 C. Samples: For each type of insulation and field-applied jacket. Identify each Sample, describing product and intended use.
 1. Manufacturer's Color Charts: Show the full range of colors available for each type of field-applied finish material indicated.
 D. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets with requirements indicated. Include dates of tests.
 E. Installer Certificates: Signed by the Contractor certifying that installers comply with requirements.

1.4 QUALITY ASSURANCE
A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the U.S. Department of Labor, Bureau of Apprenticeship and Training.

B. Fire-Test-Response Characteristics: As determined by testing materials identical to those specified in this Section according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and sealer and cement material containers with appropriate markings of applicable testing and inspecting agency.

1. Insulation Installed Indoors: Flame-spread rating of 25 or less, and smoke-developed rating of 50 or less.
2. Insulation Installed Outdoors: Flame-spread rating of 75 or less, and smoke-developed rating of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Ship insulation materials in containers marked by manufacturer with appropriate ASTM specification designation, type and grade, and maximum use temperature.

1.6 COORDINATION

A. Coordinate clearance requirements with duct Installer for insulation application.

1.7 SCHEDULING

A. Schedule insulation application after testing duct systems. Insulation application may begin on segments of ducts that have satisfactory test results.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Mineral-Fiber Insulation:
 a. CertainTeed Manson.
 b. Knauf FiberGlass GmbH.
 c. Owens-Corning Fiberglas Corp.
 d. Schuller International, Inc.
 e. Or Approved Equal

2.2 INSULATION MATERIALS

A. Mineral-Fiber Board Thermal Insulation: Glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IB, without facing and with all-service jacket manufactured from kraft paper, reinforcing scrim, aluminum foil, and vinyl film.
B. Mineral-Fiber Blanket Thermal Insulation: Glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II, without facing and with all-service jacket manufactured from kraft paper, reinforcing scrim, aluminum foil, and vinyl film.

2.3 FIELD-APPLIED JACKETS

A. General: ASTM C 921, Type 1, unless otherwise indicated.

C. Aluminum Jacket: Sheets manufactured from aluminum alloy complying with ASTM B 209, and having an integrally bonded moisture barrier over entire surface in contact with insulation. Metal thickness and corrugation dimensions are scheduled at the end of this Section.

 1. Finish: Smooth finish.

2.4 ACCESSORIES AND ATTACHMENTS

A. Glass Cloth and Tape: Comply with MIL-C-20079H, Type I for cloth and Type II for tape. Woven glass-fiber fabrics, plain weave, presized a minimum of 8 oz./sq. yd..

 1. Tape Width: 4 inches.

B. Bands: 3/4 inch wide, in one of the following materials compatible with jacket:

 1. Stainless Steel: ASTM A 666, Type 304; 0.020 inch thick.
 2. Galvanized Steel: 0.005 inch thick.
 3. Aluminum: 0.007 inch thick.

C. Wire: 0.080-inch, nickel-copper alloy; 0.062-inch, soft-annealed, stainless steel; or 0.062-inch, soft-annealed, galvanized steel.

D. Weld-Attached Anchor Pins and Washers: Copper-coated steel pin for capacitor-discharge welding and galvanized speed washer. Pin length sufficient for insulation thickness indicated.

 1. Welded Pin Holding Capacity: 100 lb for direct pull perpendicular to the attached surface.

E. Adhesive-Attached Anchor Pins and Speed Washers: Galvanized steel plate, pin, and washer manufactured for attachment to duct and plenum with adhesive. Pin length sufficient for insulation thickness indicated.

 1. Adhesive: Recommended by the anchor pin manufacturer as appropriate for surface temperatures of ducts, plenums, and breechings; and to achieve a holding capacity of 100 lb for direct pull perpendicular to the adhered surface.

F. Self-Adhesive Anchor Pins and Speed Washers: Galvanized steel plate, pin, and washer manufactured for attachment to duct and plenum with adhesive. Pin length sufficient for insulation thickness indicated.
2.5 VAPOR RETARDERS

A. Mastics: Materials recommended by insulation material manufacturer that are compatible with insulation materials, jackets, and substrates.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL APPLICATION REQUIREMENTS

A. Apply insulation materials, accessories, and finishes according to the manufacturer's written instructions; with smooth, straight, and even surfaces; and free of voids throughout the length of ducts and fittings.

B. Refer to schedules at the end of this Section for materials, forms, jackets, and thicknesses required for each duct system.

C. Use accessories compatible with insulation materials and suitable for the service. Use accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Apply multiple layers of insulation with longitudinal and end seams staggered.

E. Seal joints and seams with vapor-retarder mastic on insulation indicated to receive a vapor retarder.

F. Keep insulation materials dry during application and finishing.

G. Apply insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by the insulation material manufacturer.

H. Apply insulation with the least number of joints practical.

I. Apply insulation over fittings and specialties, with continuous thermal and vapor-retarder integrity, unless otherwise indicated.

J. Hangers and Anchors: Where vapor retarder is indicated, seal penetrations in insulation at hangers, supports, anchors, and other projections with vapor-retarder mastic. Apply insulation continuously through hangers and around anchor attachments.
K. Insulation Terminations: For insulation application where vapor retarders are indicated, seal ends with a compound recommended by the insulation material manufacturer to maintain vapor retarder.

L. Apply insulation with integral jackets as follows:
 1. Pull jacket tight and smooth.
 2. Joints and Seams: Cover with tape and vapor retarder as recommended by insulation material manufacturer to maintain vapor seal.
 3. Vapor-Retarder Mastics: Where vapor retarders are indicated, apply mastic on seams and joints and at ends adjacent to duct flanges and fittings.

M. Cut insulation according to manufacturer's written instructions to prevent compressing insulation to less than 75 percent of its nominal thickness.

N. Install vapor-retarder mastic on ducts and plenums scheduled to receive vapor retarders.
 1. Ducts with Vapor Retarders: Overlap insulation facing at seams and seal with vapor-retarder mastic and pressure-sensitive tape having same facing as insulation. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-retarder seal.
 2. Ducts without Vapor Retarders: Overlap insulation facing at seams and secure with outward clinching staples and pressure-sensitive tape having same facing as insulation.

O. Roof Penetrations: Apply insulation for interior applications to a point even with top of roof flashing.
 1. Seal penetrations with vapor-retarder mastic.
 2. Apply insulation for exterior applications tightly joined to interior insulation ends.
 3. Seal insulation to roof flashing with vapor-retarder mastic.

P. Interior Wall and Partition Penetrations: Apply insulation continuously through walls and partitions, except fire-rated walls and partitions.

Q. Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire/smoke damper sleeves for fire-rated wall and partition penetrations.

R. Provide an additional one hundred square feet of each type of insulation and all accessories to accommodate any ductwork revisions required to resolve interferences or as directed by the Engineer.

S. Floor Penetrations: Terminate insulation at underside of floor assembly and at floor support at top of floor.
 1. For insulation indicated to have vapor retarders, taper termination and seal insulation ends with vapor-retarder mastic.

3.4 MINERAL-FIBER INSULATION APPLICATION

A. Blanket Applications for Ducts and Plenums: Secure blanket insulation with adhesive and anchor pins and speed washers.
 1. Apply adhesives according to manufacturer's recommended coverage rates per square foot, for 100 percent coverage of duct and plenum surfaces.
2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
3. Install anchor pins and speed washers on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches. Space 16 inches o.c. each way, and 3 inches maximum from insulation joints. Apply additional pins and clips to hold insulation tightly against surface at cross bracing.
 c. Anchor pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
4. Impale insulation over anchors and attach speed washers.
5. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
6. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation segment with 1/2-inch staples, 1 inch o.c., and cover with pressure-sensitive tape having same facing as insulation.
7. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. Secure with steel band at end joints and spaced a maximum of 18 inches o.c.
8. Apply insulation on rectangular duct elbows and transitions with a full insulation segment for each surface. Apply insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
9. Insulate duct stiffeners, hangers, and flanges that protrude beyond the insulation surface with 6-inch wide strips of the same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with anchor pins spaced 6 inches o.c.
10. Apply vapor-retarder mastic to open joints, breaks, and punctures for insulation indicated to receive vapor retarder.

B. Board Applications for Ducts and Plenums: Secure board insulation with adhesive and anchor pins and speed washers.
1. Apply adhesives according to manufacturer's recommended coverage rates per square foot, for 100 percent coverage of duct and plenum surfaces.
2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
3. Space anchor pins as follows:
 a. On duct sides with dimensions 18 inches and smaller, along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches. Space 16 inches o.c. each way, and 3 inches maximum from insulation joints. Apply additional pins and clips to hold insulation tightly against surface at cross bracing.
 c. Anchor pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
4. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

5. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation segment with 1/2-inch staples, 1 inch o.c., and cover with pressure-sensitive tape having same facing as insulation.

6. Apply insulation on rectangular duct elbows and transitions with a full insulation segment for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Apply insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

7. Insulate duct stiffeners, hangers, and flanges that protrude beyond the insulation surface with 6-inch wide strips of the same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with anchor pins spaced 6 inches o.c.

8. Apply vapor-retarder mastic to open joints, breaks, and punctures for insulation indicated to receive vapor retarder.

3.5 FIELD-APPLIED JACKET APPLICATION

A. Apply glass-cloth jacket, where indicated, directly over bare insulation or insulation with factory-applied jackets.

1. Apply jacket smooth and tight to surface with 2-inch overlap at seams and joints.
2. Embed glass cloth between two 0.062-inch thick coats of jacket manufacturer's recommended adhesive.
3. Completely encapsulate insulation with jacket, leaving no exposed raw insulation.

3.6 DUCT SYSTEM APPLICATIONS

A. Insulation materials and thicknesses are specified in schedules at the end of this Section.

B. Materials and thicknesses for systems listed below are specified in schedules at the end of this Section.

C. Insulate the following plenums and duct systems:

1. New indoor concealed supply-, exhaust-, return-, and outside-air ductwork.
2. New indoor and outdoor exposed supply-, exhaust-, return-, and outside-air ductwork.

D. Items Not Insulated: Unless otherwise indicated, do not apply insulation to the following systems, materials, and equipment:

1. Factory-insulated plenums, casings, terminal boxes, and filter boxes and sections.
2. Flexible connectors.
4. Testing agency labels and stamps.
5. Nameplates and data plates.
6. Access panels and doors in air-distribution systems.

3.7 INDOOR DUCT AND PLENUM APPLICATION SCHEDULE
A. Service: New and existing round & rectangular, supply-air, exhaust-air, outdoor air and return-air ducts, above accessible ceilings and exposed.

2. Thickness: 2.5 inches.
3. Number of Layers: One
5. Vapor Retarder Required: Yes.

B. Service: New and existing round & rectangular, supply-air, exhaust-air, outdoor air and return-air ducts in attics and non-accessible ceilings.

2. Thickness: 2.5 inches.
3. Number of Layers: One
5. Vapor Retarder Required: Yes.

3.8 OUTDOOR DUCT AND PLENUM APPLICATION SCHEDULE

A. Service: Round and Rectangular, supply and return-air ducts.

1. Material: Extruded Close Cell Polystyrene Foam Board (Foamular 150)
2. Thickness: 2-1/2 inches.
3. Number of Layers: One
5. Vapor Retarder Required: Yes.
6. Finish: Aluminum

END OF SECTION
SECTION 230719 - PIPE INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes preformed, rigid and flexible pipe insulation; insulating cements; field-applied jackets; accessories and attachments; and sealing compounds.

1.3 SUBMITTALS

A. Product Data: Identify thermal conductivity, thickness, and jackets (both factory and field applied, if any), for each type of product indicated.

B. Shop Drawings: Show fabrication and installation details for the following:

1. Application of protective shields, saddles, and inserts at pipe hangers for each type of insulation and hanger.
2. Attachment and covering of heat trace inside insulation.
3. Insulation application at pipe expansion joints for each type of insulation.
4. Insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
5. Removable insulation at piping specialties and equipment connections.
6. Application of field-applied jackets.

C. Samples: For each type of insulation and jacket. Identify each Sample, describing product and intended use. Submit Samples in the following sizes:

1. Preformed Pipe Insulation Materials: 12 inches long by NPS 2.
2. Sheet Form Insulation Materials: 12 inches square.
4. Manufacturer's Color Charts: Show the full range of colors available for each type of field-applied finish material indicated.

D. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets with requirements indicated. Include dates of tests.

E. Installer Certificates: Signed by the Contractor certifying that installers comply with requirements.

1.4 QUALITY ASSURANCE
A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the U.S. Department of Labor, Bureau of Apprenticeship and Training.

B. Fire-Test-Response Characteristics: As determined by testing materials identical to those specified in this Section according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and sealer and cement material containers with appropriate markings of applicable testing and inspecting agency.

1. Insulation Installed Indoors: Flame-spread rating of 25 or less, and smoke-developed rating of 50 or less.
2. Insulation Installed Outdoors: Flame-spread rating of 75 or less, and smoke-developed rating of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Ship insulation materials in containers marked by manufacturer with appropriate ASTM specification designation, type and grade, and maximum use temperature.

1.6 COORDINATION

A. Coordinate size and location of supports, hangers, and insulation shields specified in Section "Hangers and Supports."

B. Coordinate clearance requirements with piping Installer for insulation application.

1.7 SCHEDULING

A. Schedule insulation application after testing piping systems. Insulation application may begin on segments of piping that have satisfactory test results.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Mineral-Fiber Insulation:
 a. CertainTeed Manson.
 b. Knauf FiberGlass GmbH.
 c. Owens-Corning Fiberglas Corp.
 d. Schuller International, Inc.
 e. Or Approved Equal

2. Flexible Elastomeric Thermal Insulation:
 a. Armstrong World Industries, Inc.
 b. Rubatex Corp.
2.2 INSULATION MATERIALS

A. Mineral-Fiber Insulation: Glass fibers bonded with a thermosetting resin complying with the following:
 1. Preformed Pipe Insulation: Comply with ASTM C 547, Type 1, with factory-applied, all-purpose, vapor-retarder jacket.
 2. Blanket Insulation: Comply with ASTM C 553, Type II, without facing.
 3. Fire-Resistant Adhesive: Comply with MIL-A-3316C in the following classes and grades:
 a. Class 1, Grade A for bonding glass cloth and tape to unfaced glass-fiber insulation, for sealing edges of glass-fiber insulation, and for bonding lagging cloth to unfaced glass-fiber insulation.
 b. Class 2, Grade A for bonding glass-fiber insulation to metal surfaces.
 4. Vapor-Retarder Mastics: Fire- and water-resistant, vapor-retarder mastic for indoor applications. Comply with MIL-C-19565C, Type II.

B. Flexible Elastomeric Thermal Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.
 1. Adhesive: As recommended by insulation material manufacturer.
 2. Ultraviolet-Protective Coating: As recommended by insulation manufacturer.

C. Prefabricated Thermal Insulating Fitting Covers: Comply with ASTM C 450 for dimensions used in preforming insulation to cover valves, elbows, tees, and flanges.

2.3 FIELD-APPLIED JACKETS

A. General: ASTM C 921, Type 1, unless otherwise indicated.

C. PVC Jacket: High-impact, ultraviolet-resistant PVC; 20 mils thick; roll stock ready for shop or field cutting and forming.
 1. Adhesive: As recommended by insulation material manufacturer.
 2. PVC Jacket Color: Color-code piping jackets based on materials contained within the piping system.

D. Heavy PVC Fitting Covers: Factory-fabricated fitting covers manufactured from 30-mil-thick, high-impact, ultraviolet-resistant PVC.
 1. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories for the disabled.
 2. Adhesive: As recommended by insulation material manufacturer.
E. Standard PVC Fitting Covers: Factory-fabricated fitting covers manufactured from 20-mil-thick, high-impact, ultraviolet-resistant PVC.

1. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories for the disabled.
2. Adhesive: As recommended by insulation material manufacturer.

F. Aluminum Jacket: Aluminum roll stock, ready for shop or field cutting and forming to indicated sizes. Comply with ASTM B209, 3003 alloy, H-14 temper.

1. Finish and Thickness: Smooth finish, 0.010 inch thick.
3. Elbows: Preformed, 45- and 90-degree, short- and long-radius elbows; same material, finish, and thickness as jacket.

2.4 ACCESSORIES AND ATTACHMENTS

A. Glass Cloth and Tape: Comply with MIL-C-20079H, Type I for cloth and Type II for tape. Woven glass-fiber fabrics, plain weave, presized a minimum of 8 oz./sq. yd.

1. Tape Width: 4 inches.

B. Bands: 3/4 inch wide, in one of the following materials compatible with jacket:

1. Stainless Steel: ASTM A666, Type 304; 0.020 inch thick.
2. Galvanized Steel: 0.005 inch thick.
3. Aluminum: 0.007 inch thick.
4. Brass: 0.010 inch thick.
5. Nickel-Copper Alloy: 0.005 inch thick.

C. Wire: 0.080-inch, nickel-copper alloy; 0.062-inch, soft-annealed, stainless steel; or 0.062-inch, soft-annealed, galvanized steel.

2.5 VAPOR RETARDERS

A. Mastics: Materials recommended by insulation material manufacturer that are compatible with insulation materials, jackets, and substrates.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION
A. Surface Preparation: Clean and dry pipe and fitting surfaces. Remove materials that will adversely affect insulation application.

3.3 GENERAL APPLICATION REQUIREMENTS

A. Apply insulation materials, accessories, and finishes according to the manufacturer's written instructions; with smooth, straight, and even surfaces; free of voids throughout the length of piping, including fittings, valves, and specialties.

B. Refer to schedules at the end of this Section for materials, forms, jackets, and thicknesses required for each piping system.

C. Use accessories compatible with insulation materials and suitable for the service. Use accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Apply insulation with longitudinal seams at top and bottom of horizontal pipe runs.

E. Apply multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Provide an additional fifty feet of insulation of each type and thickness used on the project to be used as directed by the Engineer.

H. Seal joints and seams with vapor-retarder mastic on insulation indicated to receive a vapor retarder.

I. Keep insulation materials dry during application and finishing.

J. Apply insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by the insulation material manufacturer.

K. Apply insulation with the least number of joints practical.

L. Apply insulation over fittings, valves, and specialties, with continuous thermal and vapor-retarder integrity, unless otherwise indicated. Refer to special instructions for applying insulation over fittings, valves, and specialties.

M. Hangers and Anchors: Where vapor retarder is indicated, seal penetrations in insulation at hangers, supports, anchors, and other projections with vapor-retarder mastic.

1. Apply insulation continuously through hangers and around anchor attachments.
2. For insulation application where vapor retarders are indicated, extend insulation on anchor legs at least 12 inches from point of attachment to pipe and taper insulation ends. Seal tapered ends with a compound recommended by the insulation material manufacturer to maintain vapor retarder.
3. Install insert materials and apply insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by the insulation material manufacturer.
4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect the jacket from tear or puncture by the hanger, support, and shield.
N. Insulation Terminations: For insulation application where vapor retarders are indicated, taper insulation ends. Seal tapered ends with a compound recommended by the insulation material manufacturer to maintain vapor retarder.

O. Apply adhesives and mastics at the manufacturer's recommended coverage rate.

P. Apply insulation with integral jackets as follows:
 1. Pull jacket tight and smooth.
 2. Circumferential Joints: Cover with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip and spaced 4 inches o.c.
 3. Longitudinal Seams: Overlap jacket seams at least 1-1/2 inches. Apply insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 a. Exception: Do not staple longitudinal laps on insulation having a vapor retarder.
 4. Vapor-Retarder Mastics: Where vapor retarders are indicated, apply mastic on seams and joints and at ends adjacent to flanges, unions, valves, and fittings.
 5. At penetrations in jackets for thermometers and pressure gages, fill and seal voids with vapor-retarder mastic.

Q. Roof Penetrations: Apply insulation for interior applications to a point even with top of roof flashing.
 1. Seal penetrations with vapor-retarder mastic.
 2. Apply insulation for exterior applications tightly joined to interior insulation ends.
 3. Extend metal jacket of exterior insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal metal jacket to roof flashing with vapor-retarder mastic.

R. Exterior Wall Penetrations: For penetrations of below-grade exterior walls, terminate insulation flush with mechanical sleeve seal. Seal terminations with vapor-retarder mastic.

S. Interior Wall and Partition Penetrations: Apply insulation continuously through walls and floors.

T. Fire-Rated Wall and Partition Penetrations: Apply insulation continuously through penetrations of fire-rated walls and partitions.
 1. Provide appropriately rated firestopping and fire-resistive joint sealers.

U. Floor Penetrations: Apply insulation continuously through floor assembly.
 1. For insulation with vapor retarders, seal insulation with vapor-retarder mastic where floor supports penetrate vapor retarder.

3.4 MINERAL-FIBER INSULATION APPLICATION

A. Apply insulation to straight pipes and tubes as follows:
 1. Secure each layer of preformed pipe insulation to pipe with wire, tape, or bands without deforming insulation materials.
2. Where vapor retarders are indicated, seal longitudinal seams and end joints with vapor-retarder mastic. Apply vapor retarder to ends of insulation at intervals of 15 to 20 feet to form a vapor retarder between pipe insulation segments.
3. For insulation with factory-applied jackets, secure laps with outward clinched staples at 6 inches o.c.
4. For insulation with factory-applied jackets with vapor retarders, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by the insulation material manufacturer and seal with vapor-retarder mastic.

B. Apply insulation to flanges as follows:
 1. Apply preformed pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation segment the same as overall width of the flange and bolts, plus twice the thickness of the pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 4. Apply canvas jacket material with manufacturer's recommended adhesive, overlapping seams at least 1 inch, and seal joints with vapor-retarder mastic.

C. Apply insulation to fittings and elbows as follows:
 1. Apply premolded insulation sections of the same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
 2. When premolded insulation elbows and fittings are not available, apply mitered sections of pipe insulation, or glass-fiber blanket insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire, tape, or bands.
 3. Cover fittings with heavy PVC fitting covers. Overlap PVC covers on pipe insulation jackets at least 1 inch at each end. Secure fitting covers with manufacturer's attachments and accessories. Seal seams with tape and vapor-retarder mastic.

D. Apply insulation to valves and specialties as follows:
 1. Apply premolded insulation sections of the same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
 2. When premolded insulation sections are not available, apply glass-fiber blanket insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation. For check valves, arrange insulation for access to stainer basket without disturbing insulation.
 3. Apply insulation to flanges as specified for flange insulation application.
 4. Use preformed heavy PVC fitting covers for valve sizes where available. Secure fitting covers with manufacturer's attachments and accessories. Seal seams with tape and vapor-retarder mastic.
 5. For larger sizes where PVC fitting covers are not available, seal insulation with canvas jacket and sealing compound recommended by the insulation material manufacturer.
 6. application.
 7. Finish specialty insulation same as pipe insulation.

3.5 FLEXIBLE ELASTOMERIC THERMAL INSULATION APPLICATION

A. Apply insulation to straight pipes and tubes as follows:
 1. Follow manufacturer's written instructions for applying insulation.
 2. Seal longitudinal seams and end joints with manufacturer's recommended adhesive. Cement to avoid openings in insulation that will allow passage of air to the pipe surface.
B. Apply insulation to flanges as follows:
 1. Apply pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation segment the same as overall width of the flange and bolts, plus twice the thickness of the pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of the same thickness as pipe insulation.
 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive. Cement to avoid openings in insulation that will allow passage of air to the pipe surface.

C. Apply insulation to fittings and elbows as follows:
 1. Apply mitered sections of pipe insulation.
 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive. Cement to avoid openings in insulation that will allow passage of air to the pipe surface.

D. Apply insulation to valves and specialties as follows:
 1. Apply preformed valve covers manufactured of the same material as pipe insulation and attached according to the manufacturer's written instructions.
 2. Apply cut segments of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation. For check valves, fabricate removable sections of insulation arranged to allow access to stainer basket.
 3. Apply insulation to flanges as specified for flange insulation application.
 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive. Cement to avoid openings in insulation that will allow passage of air to the pipe surface.

3.6 FIELD-APPLIED JACKET APPLICATION

A. Apply glass-cloth jacket, where indicated, directly over bare insulation or insulation with factory-applied jackets.
 1. Apply jacket smooth and tight to surface with 2-inch overlap at seams and joints.
 2. Embed glass cloth between two 0.062-inch-thick coats of jacket manufacturer's recommended adhesive.
 3. Completely encapsulate insulation with jacket, leaving no exposed raw insulation.

B. Foil and Paper Jackets: Apply foil and paper jackets where indicated.
 1. Draw jacket material smooth and tight.
 2. Apply lap or joint strips with the same material as jacket.
 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 4. Apply jackets with 1-1/2-inch laps at longitudinal seams and 3-inch-wide joint strips at end joints.
 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-retarder mastic.

C. Apply PVC jacket where indicated, with 1-inch overlap at longitudinal seams and end joints. Seal with manufacturer's recommended adhesive.
D. Apply metal jacket where indicated, with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.7 FINISHES

A. Glass-Cloth Jacketed Insulation: Paint insulation finished with glass-cloth jacket.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of the insulation manufacturer's recommended protective coating.

C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

3.8 PIPING SYSTEM APPLICATIONS

A. Insulation materials and thicknesses are specified in schedules at the end of this Section.

B. Items Not Insulated: Unless otherwise indicated, do not apply insulation to the following systems, materials, and equipment:

1. Flexible connectors.
2. Vibration-control devices.
3. Fire-suppression piping.
4. Sanitary Drainage piping located in crawl spaces, unless otherwise indicated.
5. Below-grade piping, unless otherwise indicated.
6. Chrome-plated pipes and fittings, unless potential for personnel injury.
7. Air chambers, unions, strainers, check valves, plug valves, and flow regulators.

3.9 FIELD QUALITY CONTROL

A. Inspection: Perform the following field quality-control inspections, after installing insulation materials, jackets, and finishes, to determine compliance with requirements:

1. Inspect fittings and valves randomly selected by Engineer/Architect.
2. Remove fitting covers from 20 elbows or 1 percent of elbows, whichever is less, for various pipe sizes.
3. Remove fitting covers from 20 valves or 1 percent of valves, whichever is less, for various pipe sizes.

B. Insulation applications will be considered defective if sample inspection reveals noncompliance with requirements. Remove defective Work and replace with new materials according to these Specifications.

C. Reinstall insulation and covers on fittings and valves uncovered for inspection according to these Specifications.

3.10 INSULATION APPLICATION SCHEDULE, GENERAL
A. Refer to insulation application schedules for required insulation materials, vapor retarders, and field-applied jackets.

B. Application schedules identify piping system and indicate pipe size ranges and material, thickness, and jacket requirements.

3.11 INTERIOR INSULATION APPLICATION SCHEDULE

A. Service: Refrigerant Piping.

1. Operating Temperature: 35 to 50 deg F.
2. Insulation Material: Mineral fiber.
3. Insulation Thickness: Apply the following insulation thicknesses:
 a. Copper Pipe, 1/4"-1": 1"
 b. Copper Pipe, 1-1/2"-2": 1.5"
 c. Copper Pipe, 2-1/2"-4": 2.0"

4. Field-Applied Jacket: PVC.
5. Vapor Retarder Required: Yes.
6. Finish: None.

B. Service: Heating Hot Water Supply and Return.

1. Operating Temperature: 100 to 200 deg F.
2. Insulation Material: Mineral fiber.
3. Insulation Thickness: Apply the following insulation thicknesses:
 1) Copper Pipe, 1/4"-1": 1.5"
 2) Copper Pipe, 1-1/2"-2": 1.5"
 3) Copper Pipe, 2-1/2"-4": 2"
 4) Copper/Steel Pipe, 5" & 6": 2.5"
 5) Copper/Steel Pipe, 8" & up: 2.5"

5. Vapor Retarder Required: Yes.
6. Finish: None.

C. Service: Chilled Water Supply and Return.

1. Operating Temperature - CHWS/R: 32 to 100 deg F
2. Insulation Material: Mineral fiber
3. Insulation Thickness: Apply the following insulation thicknesses:
 a. Copper Pipe, 1/4"-1": 1.5"
 b. Copper Pipe, 1-1/2"-2": 1.5"
 c. Copper/Steel Pipe, 2-1/2"-4": 2.0"
 d. Copper/Steel Pipe, 5" & 6": 2.5"
 e. Copper/Steel Pipe, 8" & up: 2.5"

5. Vapor Retarder Required: Yes.
6. Finish: None.
D. Service: Steam and Condensate.
 1. Operating Temperature: 450 deg F and lower.
 2. Insulation Material: Mineral fiber
 3. Insulation Thickness: Apply the following insulation thicknesses:
 a. Steel Pipe, NPS 2 and Smaller: 2.0” thick
 b. Steel Pipe, NPS 2-1/2 through NPS 12: 2.5” thick
 c. Steel Pipe, NPS 14 through NPS 18: 3” thick
 5. Vapor Retarder Required: Yes.
 6. Finish: Paint where exposed in finished areas.

E. Service: Condensate drain piping.
 1. Operating Temperature: 35 to 75 deg F.
 2. Insulation Material: Flexible elastomeric.
 3. Insulation Thickness: 1”
 5. Vapor Retarder Required: Yes.
 6. Finish: None.

3.12 EXTERIOR INSULATION APPLICATION SCHEDULE

A. This application schedule is for aboveground insulation outside the building.

B. Service: Refrigerant Piping.
 1. Operating Temperature: 35 to 50 deg F.
 2. Insulation Material: Flexible elastomeric.
 3. Insulation Thickness: Apply the following insulation thicknesses:
 a. Copper Pipe, 1/4”-4”: 1.5”
 5. Vapor Retarder Required: Yes.
 6. Finish: None.

C. Service: Chilled Water supply and return.
 1. Operating Temperature: 0 to 75 deg F.
 2. Insulation Material: Mineral fiber
 3. Insulation Thickness: Apply the following insulation thicknesses:
 1) Copper Pipe, 1/4”-1”: 1.5”
 2) Copper Pipe, 1-1/2”-2”: 1.5”
 3) Copper/Steel Pipe, 2-1/2”-4”: 2”
 4) Copper/Steel Pipe, 5” & 6”: 2.5”
 5) Copper/Steel Pipe, 8” & up: 2.5”
 4. Field-Applied Jacket: Aluminum
 5. Vapor Retarder Required: Yes.
 6. Finish: None.
 7. Heat trace all exterior chilled water piping

D. Service: Heating Hot Water Supply and Return.
1. Operating Temperature: 100 to 200 deg F.
2. Insulation Material: Mineral fiber.
3. Insulation Thickness: Apply the following insulation thicknesses:
 1) Copper Pipe, 1/4"-1": 1.5"
 2) Copper Pipe, 1-1/2"-2": 1.5"
 3) Copper/Steel Pipe, 2-1/2"-4": 2"
 4) Copper/Steel Pipe, 5" & 6": 2.5"
 5) Copper/Steel Pipe, 8" & up: 2.5"
5. Vapor Retarder Required: Yes.
6. Finish: None.
7. Heat trace all exterior heating hot water piping

END OF SECTION
SECTION 230993 - SEQUENCE OF OPERATIONS FOR HVAC CONTROLS

PART 1 GENERAL

1.01 PACKAGED ROOFTOP SYSTEM CONTROL 100% OA (RTU-1 & 2)

1. General
 a. **Discharge Air Temperature Setpoint Maximum** is adjustable but cannot exceed 120°F for gas, heat pump, or hot water heating, and 90°F for electric heating.
 b. **Program Control Type** can be determined using Multi-State Value 13.
 c. **Note** that there is a 3-minute delay during compressor or gas heater staging to allow the system to stabilize before adjusting the cooling or heating capacity.

2. Program-Controlled Setpoints
 a. Space Control
 i. **Discharge Air Temperature Setpoint Active** is reset by comparing the **Space Temperature Active** to **Occupied Cooling Setpoint** during cooling and **Occupied Heating Setpoint** during heating. If a single setpoint is preferred, use **Space Temperature Setpoint BAS** by putting it In Service using Tracer TU or BAS.
 ii. **Dehumidification Temperature Setpoint Active** is reset by comparing the **Space Dewpoint** to the **Space Dewpoint Calculated Enable Setpoint** minus 2°F.
 iii. If **Space Temperature Setpoint BAS** or **Space Temperature Setpoint Local** (Thumbwheel) is In Service, **Occupied Offset** is adjustable (2°F default). Otherwise, is determined using **Occupied Cooling Setpoint** and **Occupied Heating Setpoint**.
 iv. If **Occupied Cooling Setpoint** is below **Occupied Heating Setpoint**, **Occupied Offset** is 1°F. If **Occupied Cooling Setpoint** is above **Occupied Heating Setpoint**, **Occupied Offset** is the difference between the two setpoints.
 v. **Space Dewpoint Calculated Enable Setpoint** is calculated using **Space Humidity Setpoint** and **Space Temperature Setpoint Active**.

3. Occupied Control
 a. **Starting Sequence**
 Occupied operation begins when the unit is placed in Occupied via BAS or when OAUTS-7 & 8 is closed on the field wiring terminal strip. The unit must not be in **Emergency Stop** to begin starting sequence. OAUTS-9 & 10 on the field wiring terminal strip are used as an external **Emergency Stop** for the unit. Cycling power to unit to may not resolve alarm condition.
 Refer to Multi-State Value **Occupancy Status** to determine the active status of the unit.
 b. **Two-Position Outdoor & Return Air Dampers** will begin by energizing relay OADR, opening the outdoor air damper and closing the return air damper. The supply fan sequence starts immediately after the unit becomes occupied.

4. Supply Fan Sequence
 a. **Supply Fan Starting Sequence** begins by energizing relay G and setting the **Supply Fan Speed Command** to 50%. The supply fan status switch (IFFS) closes, energizing relay IFFR. If after two minutes there is no proven signal, **Diagnostic: Supply Fan Failure** will be displayed, and the unit will shut down requiring a manual reset.
b. Constant Volume with ECM
After completing the starting sequence, the unit calculates the Supply Fan Air Flow Active and adjusts Supply Fan Speed Command to maintain the Supply Fan Air Flow Setpoint (adjustable, factory set according to submittal).

5. Economizer Mode
Free Cooling Mode is enabled when the unit is in Economizer Mode and the Outdoor Air Temperature Active is cooler than five degrees below the Discharge Air Temperature Setpoint Active. During Free Cooling Mode, mechanical cooling is locked out and the unit adjusts the outdoor air damper position to maintain the Discharge Air Temperature Setpoint Active.

6. Zone temperature averaging
Zone temperature averaging will be supplied and field programmed by the DOAS manufacturer. The controller shall poll several space temperature sensors (see plans for quantity and location) and control to the average of the zone temperatures. Should a sensor fail, an alarm shall be reported at the controller display, and the controller shall re-calculate the average based on the remaining active sensors.

7. Ventilation Mode
 a. Space Control
 Ventilation Mode is enabled when the Outdoor Air Temperature Active and the Space Temperature Active is within two degrees of the Space Temperature Setpoint Active. During Ventilation Mode, heating and cooling is locked out and the unit supplies un-conditioned air. Ventilation Mode is locked out whenever the unit is in Dehumidification Mode.

8. Primary Heating Mode
Space Control, with Energy Recovery Wheel
Heating Mode is enabled according to the graph shown in Figure 1. Using the graph, setpoint is Space Temperature Setpoint Active, offset is Occupied Offset, and temperature is Space Temperature Active. Dehumidification Mode takes priority over Heating and Cooling Mode. During Heating Mode, Heat Capacity is adjusted to maintain the Discharge Air Temperature Local to Discharge Air Temperature Setpoint Active.

 Figure 1. Heat Cool Mode Arbitration Graph.

9. Cooling Mode
Space Control with Energy Recovery Wheel
Cooling Mode is enabled according to the graph shown in Figure 1. Using the graph, setpoint is Space Temperature Setpoint Active, offset is Occupied Offset, and temperature is Space Temperature Active.
Temperature Active. Dehumidification Mode takes priority over Cooling Mode.

Compressor Low Ambient Lockout
On units without head pressure control, the compressors will be locked out if the Outdoor Air Temperature Active falls below the Compressor Low Ambient Lockout Setpoint and there is a demand for cooling. When this occurs, the unit will display Compressor Low Ambient Lockout Active as an informational diagnostic.

Evaporator Frost Protection
Circuit 1 refrigeration pressure is monitored, and Cooling Capacity will be limited to prevent the indoor coil from freezing. If the unit has digital scroll on the second circuit, then both circuits will be monitored.

Humidity sensor peak control
Humidity sensor peak control will be supplied and field programmed by the DOAS manufacturer. The controller shall poll several space humidity sensors (see plans for quantity and location) and control to the peak value of the zone humidity levels. (critical zone control) Should a sensor fail, an alarm shall be reported at the controller display, and the controller shall re-calculate the peak based on the remaining active sensors.

Dehumidification Mode
Outdoor Air Dewpoint is calculated using Outdoor Air Temperature Active and Outdoor Air Humidity Active.
For Dehumidification Temperature Active, OAN Rev. 6 (OANG) cabinet uses Discharge Air Dewpoint (calculated using Discharge Air Temperature Local and Discharge Air Humidity Local), all other cabinets use Indoor Coil Leaving Air Temperature Local.

Space Control with Energy Recovery
Dehumidification Mode is enabled whenever the Space Dewpoint rises above the Space Dewpoint Calculated Enable Setpoint.
During Dehumidification Mode, the Dehumidification Temperature Setpoint Active is reset by comparing Space Dewpoint to Space Dewpoint Calculated Enable Setpoint minus 2°F. Hot Gas Reheat Valve Command (if installed) is adjusted to maintain Discharge Air Temperature Setpoint Active.

Hot Gas Reheat Purge
Hot Gas Reheat Purge Mode is initiated if the Hot Gas Reheat Valve Command is between 10% and 50% for thirty continuous minutes. During Hot Gas Reheat Purge Mode the signal first goes to 80% for one minute, then to 10% for one minute. The Hot Gas Reheat Valve Command returns to its previous position and will begin to modulate after a 30-second delay.

Supplemental Hot Water Reheat
If the Hot Gas Reheat Valve Command is at 100%, the hot water valve is energized with Heating Capacity at 0%. If Heat Capacity rises above 0%, the Hot Gas Reheat Valve Command will be locked at 100% and the hot water will be used to maintain the Discharge Air Temperature Setpoint Active.

10. Exhaust Fan Operation
With Isolation Exhaust Fan Damper(s)
After completing the Supply Fan Starting Sequence, Exhaust Damper Open Close Command is enabled. Once the Exhaust Damper End Switch has proven, Exhaust Fan Start Stop Command is enabled.
ECM Exhaust with 2-Position OA Damper
Using the Exhaust Air Flow Active from the exhaust fan piezo reading, the unit controls exhaust fan speed to a constant volume of according to the Exhaust Air Flow Setpoint.

11. Energy Recovery Wheel Operation (ERV)
The Energy Recovery Wheel Start Stop Command is enabled whenever there is a call for exhaust fan. During Ventilation Mode or Economizer Mode the ERV is disabled, except during the cleaning cycle, which occurs for two minutes every thirty minutes.
During cooling operation, the Energy Recovery Exhaust Air Bypass Position Command is locked at 0% (closed position) for full energy recovery. During heating operation, the position is modulated to maintain the Discharge Air Temperature Setpoint Active for variable effectiveness capacity control.
Once the bypass damper becomes fully closed, the primary heater will be engaged.
During Economizer Mode and Ventilation Mode the ERV bypass dampers are locked in the open position.

Energy Wheel Without VFD
The unit prevents frost accumulation on the ERV by measuring the Exhaust Leaving Temperature Local. The Energy Recovery Outdoor Air Bypass Position Command is modulated open to maintain 15°F for the exhaust temperature. Above this temperature, the bypass damper will remain at 0% signal (closed) when the ERV is in operation.

12. Additional Features

Space Thumbwheel Input
Space Control and Single Zone VAV
With a space thumbwheel installed, the Occupied Heating Setpoint and Occupied Cooling Setpoint is replaced with a single setpoint from the input Space Temperature Setpoint Local. The occupancy override button will override Occupancy Request to Occupied for two hours from the time it was pressed.

Outdoor Airflow Monitoring
Units with Outdoor Air Flow Local In Service and Modulating Dampers installed will modulate the Outdoor Air Damper Position Command the Outdoor Air Minimum Flow Setpoint. Damper position is restricted between the Outdoor Air Damper Minimum Position Setpoint and Outdoor Air Damper Maximum Position Setpoint.

13. Unoccupied Operation
To enable heating, cooling, and dehumidification during unoccupied operation, the BV Allow Unoccupied Operation must be set as Allowed. Space conditions must be communicated via BAS or a hardwire space/temperature humidity sensor.

Starting Sequence
Unoccupied starting sequence begins when the Unoccupied Heating, Cooling, or Dehumidification Mode is enabled. Otherwise, the unit shall remain dormant with the supply fan disabled. Supply Fan Startup sequence is identical to occupied operation.

With Return Air Damper Installed
The outdoor air damper will be commanded to close, and the return air damper will open. If the unit is under Economizer conditions as described under the occupied section the Outdoor Air Damper Position Command will open to the Outdoor Air Damper Maximum Position Setpoint.
Unoccupied Heating Mode

Unoccupied Heating Mode is enabled when the *Space Temperature Active* falls below the *Unoccupied Heating Enable Setpoint*. During *Unoccupied Heating Mode* the unit will run the heat to maintain 90°F for the discharge air temperature. *Unoccupied Heating Mode* is disabled when the *Space Temperature Active* rises 2°F above the *Unoccupied Heating Setpoint*.

Unoccupied Dehumid Mode

When there is no call for *Unoccupied Heating Mode*, *Unoccupied Dehumid Mode* is enabled when the *Space Dewpoint* rises above the *Unoccupied Dewpoint Enable Setpoint*. During *Unoccupied Dehumid Mode* the unit will run the cooling to maintain 45°F for the evaporator leaving temperature and reheat to 50°F for the discharge air temperature. *Unoccupied Dehumid Mode* is disabled when the *Space Dewpoint* rises 2°F above the *Unoccupied Dewpoint Enable Setpoint*.

Unoccupied Cooling Mode

When there is no call for *Unoccupied Heating Mode* or *Unoccupied Dehumid Mode*, *Unoccupied Cooling Mode* is enabled when the *Space Temperature Active* rises above the *Unoccupied Cooling Enable Setpoint*. During *Unoccupied Cooling Mode* the unit will run the cooling to maintain 50°F for the discharge air temperature. *Unoccupied Cooling Mode* is disabled when the *Space Temperature Active* rises 2°F above the *Unoccupied Cooling Enable Setpoint*.

14. Diagnostics

The following list contains the diagnostics indicated by Binary Values or Binary Inputs. These are typically determined in the background of the program, and the status is written to these points. Analog Inputs, Analog Values, or other points may also show alarms, which typically indicates that they are outside of the normal range or that communication to the device has been lost.

Energy Wheel with Optional Rotation Sensor

Units equipped with an optional rotation sensor detects rotation status using a proximity sensor that detects movement of the “pie” sections. If *Energy Recovery Wheel Start Stop Command* is enabled, but the *Energy Recovery Wheel Rotation Status Local* remains Off for five minutes, **Diagnostic: Energy Recovery Wheel Rotation Failure** will be displayed. This diagnostic is auto reset when rotation status is detected.

Condensate Detection Input will display a fault when the switch located in the condensate pan for the indoor coil has tripped.

Emergency Stop will display a fault if the Emergency Stop circuit is opened. Line 76 on the wiring diagram shows the circuit to energize the Emergency Stop Relays. The unit is shut down when this diagnostic occurs, including the supply fan.

Compressor Low Ambient Lockout Active will display a fault if there is a demand for cooling according to the setpoints, but the *Outdoor Air Temperature Active* is below the *Compressor Low Ambient Lockout Setpoint* and the unit does not have active head pressure control. This diagnostic locks out compressor operation.

Diagnostic: Compressor [1,2,...] Run Failure is displayed when there is a command for a compressor but there is no active status for the compressor. Compressor status is indicated using the NC contact on the compressor auxiliary contactor. Upon an initial call for a compressor, there is a five minute and thirty second delay of no run status before an alarm is indicated. If there is five minutes of continuous operation with the run status,
there is a thirty second delay before the alarm is displayed. The program will disable the output for that compressor if there is run status alarm indicated. The diagnostic is cleared when there is an alarm reset or the diagnostic has been active for 3 hours.

Diagnostic: Compressor Fail Unit Lockout is displayed when there is a run failure diagnostic for one of the compressors and the unit is supplying unsatisfactory conditions for ten minutes. Unsatisfactory conditions are identified by the *Discharge Air Temperature Local* is 2°F above or below the *Discharge Air Temperature Setpoint Active* during Heat Pump Heating or Cooling Mode, or when the *Dehumidification Temperature Active* is 2°F below the *Dehumidification Temperature Setpoint Active* during Dehumidification Mode.

The unit is shut down when this diagnostic occurs, including the supply fan. The diagnostic can be cleared with an alarm reset and will auto-reset once the compressor run failure diagnostic is cleared.

Diagnostic: Condensate Overflow Unit Lockout is displayed when the *Condensate Detection Input* has failed, and the unit is supplying unsatisfactory conditions for five minutes. The unsatisfactory conditions use the same criteria as the *Diagnostic: Compressor Fail Unit Lockout*. The unit is shut down when this diagnostic occurs, including the supply fan. The diagnostic will auto-reset five minutes after the condensate diagnostic has cleared.

Diagnostic: [High, Low] Discharge Air Temp Lockout is displayed when the *Discharge Air Temperature Local* is [above 128°F, below 35°F] for a duration of 10 minutes. The diagnostic is manual reset using *Alarm Reset*.

Diagnostic: Liquid Line Refrigerant Pressure Circuit [1,2] Source Failure is displayed when the respective circuit is on (indicated by the compressor run status) and the *Liquid Line Refrigerant Pressure Circuit [1,2]* falls outside of the range of 150-650 PSI for a duration of two minutes. When this occurs, the condenser fans will run at 100%.

Diagnostic: Low Refrigerant Suction Pressure Circuit [1,2] is displayed when the respective circuit is on (indicated by the compressor run status) and the *Suction Line Refrigerant Pressure Circuit [1,2] Local* falls below 85 PSI (55 PSI for heat pump heating) for two continuous minutes. The diagnostic auto clears when the pressure returns to normal.

Diagnostic: Outdoor Air Damper End Switch is displayed when *Outdoor Air Damper Open Close Command* is On, but the *Outdoor Air Damper End Switch* does not prove for 3-minutes. The diagnostic is reset using *Alarm Reset* or when the end switch is proven.

Diagnostic: Supply Fan Failure is displayed when the *Supply Fan Start Stop Command* is On, but the *Supply Fan Status* does not prove for two minutes. The diagnostic requires a manual reset using *Alarm Reset*.

Sensor Source Failures

The following diagnostics are displayed when the respective sensor reading is outside of the expected range, indicating that the sensor may be faulty. Refer to the points list for expected ranges of each input.

In some cases, a BAS point is In Service, and will take priority over a hardwired input. If the point was inadvertently put In Service, and the BAS is either not writing a value or the value is outside of the expected range, then the program will first attempt to fall back to a hardwired input before displaying a source failure diagnostic.
- Diagnostic: Dehumidification Temperature Sensor Source Failure*
- Diagnostic: Discharge Air Humidity Source Failure
- Diagnostic: Discharge Air Temperature Source Failure
- Diagnostic: Duct Static Pressure Source Failure
- Diagnostic: Outdoor Air Flow Sensor Source Failure
- Diagnostic: Outdoor Air Humidity Source Failure
- Diagnostic: Outdoor Air Temperature Source Failure
- Diagnostic: Return Duct/Space Pressure Source Failure
- Diagnostic: Space CO2 Source Failure
- Diagnostic: Space Humidity Source Failure
- Diagnostic: Space Temperature Source Failure

*The Dehumidification Temperature Sensor is the Indoor Coil Leaving Air Temperature Local on all cabinets except for the OANG (OAN Rev. 6). For the OANG cabinet, the sensor is the Discharge Air Humidity Local.
SECTION 232113 - HYDRONIC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes piping, special-duty valves, and hydronic specialties for hot-water heating, chilled-water cooling; makeup water for these systems; blowdown drain lines; and condensate drain piping.

1.3 DEFINITIONS

A. CPVC: Chlorinated polyvinyl chloride.

B. PVC: Polyvinyl chloride.

1.4 SUBMITTALS

A. Product Data: For each type of special-duty valve indicated. Include flow and pressure drop curves based on manufacturer's testing for diverting fittings, calibrated balancing valves, and automatic flow-control valves.

B. Shop Drawings: Detail fabrication of pipe anchors, hangers, special pipe support assemblies, alignment guides, expansion joints and loops, and their attachment to the building structure. Detail location of anchors, alignment guides, and expansion joints and loops. Coordination drawings showing pipe sizes and routings and how they are to be installed to accommodate other disciplines (ductwork, conduit, etc)

C. Welding Certificates: Copies of certificates for welding procedures and personnel.

D. Field Test Reports: Written reports of tests specified in Part 3 of this Section. Include the following:

1. Test procedures used.
2. Test results that comply with requirements.
3. Failed test results and corrective action taken to achieve requirements.

E. Maintenance Data: For hydronic specialties and special-duty valves to include in maintenance manuals specified.
F. Water Analysis: Submit a copy of the water analysis to illustrate water quality available at Project site.

1.5 QUALITY ASSURANCE

A. Welding: Qualify processes and operators according to the ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."

B. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1.

1.6 COORDINATION

A. Coordinate layout and installation of hydronic piping and suspension system components with other construction, including light fixtures, HVAC equipment, fire-suppression-system components, and partition assemblies.

B. Coordinate pipe sleeve installations for foundation wall penetrations.

C. Coordinate pipe fitting pressure classes with products specified in related Sections.

D. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into base.

E. Coordinate installation of pipe sleeves for penetrations through exterior walls and floor assemblies.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Calibrated Balancing Valves:
 a. Armstrong Pumps, Inc.
 b. Griswold Controls.
 c. ITT Bell & Gossett; ITT Fluid Technology Corp.
 d. Taco, Inc.

2. Pressure-Reducing Valves:
 a. Amtrol, Inc.
 b. Armstrong Pumps, Inc.
 c. ITT Bell & Gossett; ITT Fluid Technology Corp.
3. Safety Valves:
 a. Amtrol, Inc.
 b. Armstrong Pumps, Inc.
 c. ITT McDonnell & Miller Div.; ITT Fluid Technology Corp.

2.2 PIPING MATERIALS
 A. General: Refer to Part 3 "Piping Applications" Article for applications of pipe and fitting materials.

2.3 COPPER TUBE AND FITTINGS
 A. Drawn-Temper Copper Tubing: ASTM B 88, Type L.
 B. DWV Copper Tubing: ASTM B 306, Type DWV.
 C. Wrought-Copper Fittings: ASME B16.22.
 D. Wrought-Copper Unions: ASME B16.22.
 F. Brazing Filler Metals: AWS A5.8, Classification BAg-1 (silver).

2.4 STEEL PIPE AND FITTINGS
 A. Steel Pipe, NPS 2 and Smaller: ASTM A 53, Type S (seamless) or Type F (furnace-butt welded), Grade A, Schedule 40, black steel, plain ends.
 B. Steel Pipe, NPS 2-1/2 through NPS 12: ASTM A 53, Type E (electric-resistance welded), Grade A, Schedule 40, black steel, plain ends.
 C. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125 and 250.
 E. Malleable-Iron Unions: ASME B16.39; Classes 150, 250, and 300.
 F. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 25, 125, and 250; raised ground face, and bolt holes spot faced.
 G. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.
 H. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
2. End Connections: Butt welding.
3. Facings: Raised face.

I. Flexible Connectors: Stainless-steel bellows with woven, flexible, bronze, wire-reinforcing protective jacket; 150-psig minimum working pressure and 250 deg F maximum operating temperature. Connectors shall have flanged or threaded-end connections to match equipment connected and shall be capable of 3/4-inch misalignment.

J. Spherical, Rubber, Flexible Connectors: Fiber-reinforced rubber body with steel flanges drilled to align with Classes 150 and 300 steel flanges; operating temperatures up to 250 deg F and pressures up to 150 psig.

K. Packed, Slip, Expansion Joints: 150-psig minimum working pressure, steel pipe fitting consisting of telescoping body and slip-pipe sections, packing ring, packing, limit rods, flanged ends, and chrome-plated finish on slip-pipe telescoping section.

L. Welding Materials: Comply with Section II, Part C, of the ASME Boiler and Pressure Vessel Code for welding materials appropriate for wall thickness and for chemical analysis of pipe being welded.

M. Gasket Material: Thickness, material, and type suitable for fluid to be handled; and design temperatures and pressures.

2.5 VALVES

A. Gate, globe, check, ball, and butterfly valves are specified in Division 15 Section "Valves."

B. Refer to Part 3 "Valve Applications" Article for applications of each valve.

C. Calibrated Balancing Valves, NPS 2 and Smaller: Bronze body, ball type, 125-psig working pressure, 250 deg F maximum operating temperature, and having threaded ends. Valves shall have calibrated orifice or venturi, connections for portable differential pressure meter with integral seals, and be equipped with a memory stop to retain set position.

D. Calibrated Balancing Valves, NPS 2-1/2 and Larger: Cast-iron or steel body, ball type, 125-psig working pressure, 250 deg F maximum operating temperature, and having flanged or grooved connections. Valves shall have calibrated orifice or venturi, connections for portable differential pressure meter with integral seals, and be equipped with a memory stop to retain set position.

E. Pressure-Reducing Valves: Diaphragm-operated, bronze or brass body with low inlet pressure check valve, inlet strainer removable without system shutdown, and noncorrosive valve seat and stem. Select valve size, capacity, and operating pressure to suit system. Valve shall be factory set at operating pressure and have capability for field adjustment.
F. Safety Valves: Diaphragm-operated, bronze or brass body with brass and rubber, wetted, internal working parts; shall suit system pressure and heat capacity and shall comply with the ASME Boiler and Pressure Vessel Code, Section IV.

2.6 HYDRONIC SPECIALTIES

A. Manual Air Vent: Bronze body and nonferrous internal parts; 150-psig working pressure; 225 deg F operating temperature; manually operated with screwdriver or thumbscrew; with NPS 1/8 discharge connection and NPS 1/2 inlet connection.

B. Automatic Air Vent: Designed to vent automatically with float principle; bronze body and nonferrous internal parts; 150-psig working pressure; 240 deg F operating temperature; with NPS 1/4 discharge connection and NPS 1/2 inlet connection.

C. Air Purgers: Cast-iron body with internal baffles that slow the water velocity to separate the air from solution and divert it to the vent for quick removal. Maximum working pressure of 150 psig and temperature of 250 deg F.

D. Bypass Chemical Feeder: Welded steel construction; 125-psig working pressure; 5-gal. capacity; with fill funnel and inlet, outlet, and drain valves.

1. Chemicals: Specially formulated, based on analysis of makeup water, to prevent accumulation of scale and corrosion in piping and connected equipment.

E. Diverting Fittings: 125-psig working pressure; 250 deg F maximum operating temperature; cast-iron body with threaded ends, or wrought copper with soldered ends. Indicate flow direction on fitting.

F. Y-Pattern Strainers: 125-psig working pressure; cast-iron body (ASTM A 126, Class B), flanged ends for NPS 2-1/2 and larger, threaded connections for NPS 2 and smaller, bolted cover, perforated stainless-steel basket, and bottom drain connection.

G. Basket Strainers: 125-psig working pressure; high-tensile cast-iron body (ASTM A 126, Class B), flanged-end connections, bolted cover, perforated stainless-steel basket, and bottom drain connection.

H. Flexible Connectors: Stainless-steel bellows with woven, flexible, bronze, wire-reinforcing protective jacket; 150-psig minimum working pressure and 250 deg F maximum operating temperature. Connectors shall have flanged- or threaded-end connections to match equipment connected and shall be capable of 3/4-inch misalignment.

I. Spherical, Rubber, Flexible Connectors: Fiber-reinforced rubber body with steel flanges drilled to align with Classes 150 and 300 steel flanges; operating temperatures up to 250 deg F and pressures up to 150 psig.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS
A. Chilled Water & Heating Hot Water, NPS 2 and Smaller: Aboveground, use Type L drawn-temper copper tubing with soldered joints. Belowground or within slabs, use Type K annealed-temper copper tubing with soldered joints. Use the fewest possible joints below ground and within floor slabs.

B. Chilled Water & Heating Hot Water, NPS 3 and Larger: Schedule 40 steel pipe with welded and flanged joints.

C. Condensate Drain Lines: Type L drawn-temper copper tubing with soldered joints.

3.2 VALVE APPLICATIONS

A. General-Duty Valve Applications: Unless otherwise indicated, use the following valve types:
 1. Shutoff Duty: Unless indicated otherwise on the drawings provided ball valves on pipe size 3” diameter and smaller and butterfly valves on pipe sizes 4” diameter and larger.

B. Install shutoff duty valves at each branch connection to supply mains, at supply connection to each piece of equipment, unless only one piece of equipment is connected in the branch line. Install throttling duty valves at each branch connection to return mains, at return connections to each piece of equipment, and elsewhere as indicated.

C. Install calibrated balancing valves in the return water line of each heating element and elsewhere as required to facilitate system balancing.

D. Install check valves at each pump discharge and elsewhere as required to control flow direction.

E. Provide and additional two valves of each type and size found on the project to be used as directed by the Engineer to resolve interferences.

F. Install safety valves on hot-water generators and elsewhere as required by the ASME Boiler and Pressure Vessel Code. Install safety-valve discharge piping, without valves, to floor. Comply with the ASME Boiler and Pressure Vessel Code, Section VIII, for installation requirements.

G. Install pressure-reducing valves as required to regulate system pressure.

3.3 PIPING INSTALLATIONS

A. Refer to Section "Basic Mechanical Materials and Methods" for basic piping installation requirements.

B. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.
C. Install drains, consisting of a tee fitting, NPS 3/4 ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.

D. Install piping at a uniform grade of 0.2 percent upward in direction of flow.

E. Reduce pipe sizes using eccentric reducer fitting installed with level side up.

F. Provide an additional fifty feet of each pipe size found on the project to be used as directed by the Engineer to resolve interferences.

G. Unless otherwise indicated, install branch connections to mains using tee fittings in main pipe, with the takeoff coming out the bottom of the main pipe. For up-feed risers, install the takeoff coming out the top of the main pipe.

H. Install strainers on supply side of each control valve, pressure-reducing valve, solenoid valve, in-line pump, and elsewhere as indicated. Install NPS 3/4 nipple and ball valve in blowdown connection of strainers NPS 2 and larger. Match size of strainer blowoff connection for strainers smaller than NPS 2.

I. Anchor piping for proper direction of expansion and contraction.

3.4 HANGERS AND SUPPORTS

A. Hanger, support, and anchor devices are specified in Section "Hangers and Supports." Comply with requirements below for maximum spacing of supports.

B. Install the following pipe attachments:

1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet long.
2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet or longer.
3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
4. Spring hangers to support vertical runs.
5. On plastic pipe, install pads or cushions on bearing surfaces to prevent hanger from scratching pipe.

C. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:

1. NPS 3/4: Maximum span, 14 feet; minimum rod size, 1/2 inch.
2. NPS 6: Maximum span, 17 feet; minimum rod size, 1/2 inch.
3. NPS 8: Maximum span, 19 feet; minimum rod size, 5/8 inch.
4. NPS 10: Maximum span, 20 feet; minimum rod size, 3/4 inch.
5. NPS 12: Maximum span, 23 feet; minimum rod size, 7/8 inch.

D. Install hangers for drawn-temper copper piping with the following maximum spacing and minimum rod sizes:
1. NPS 3/4: Maximum span, 5 feet; minimum rod size, 1/4 inch.
2. NPS 1: Maximum span, 6 feet; minimum rod size, 1/4 inch.
3. NPS 1-1/2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
4. NPS 2: Maximum span, 8 feet; minimum rod size, 3/8 inch.

E. Support vertical runs at roof, at each floor, and at 10-foot intervals between floors.

3.5 PIPE JOINT CONSTRUCTION

A. Refer to Section "Basic Mechanical Materials and Methods" for joint construction requirements for soldered and brazed joints in copper tubing; threaded, welded, and flanged joints in steel piping.

3.6 HYDRONIC SPECIALTIES INSTALLATION

A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.

B. Install automatic air vents in mechanical equipment rooms only at high points of system piping, at heat-transfer coils, and elsewhere as required for system air venting.

C. Install bypass chemical feeders in each hydronic system where indicated, in upright position with top of funnel not more than 48 inches above floor. Install feeder in bypass line, off main, using globe valves on each side of feeder and in the main between bypass connections. Pipe drain, with ball valve, to nearest equipment drain.

3.7 TERMINAL EQUIPMENT CONNECTIONS

A. Size for supply and return piping connections shall be same as for equipment connections.

B. Install control valves in accessible locations close to connected equipment.

C. Install bypass piping with globe valve around control valve. If multiple, parallel control valves are installed, only one bypass is required.

D. Install ports for pressure and temperature gages at coil inlet connections.

3.8 FIELD QUALITY CONTROL

A. Prepare hydronic piping according to ASME B31.9 and as follows:

1. Leave joints, including welds, uninsulated and exposed for examination during test.
2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
3. Flush system with clean water. Clean strainers.
4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.

5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.

B. Perform the following tests on hydronic piping:

1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.

2. While filling system, use vents installed at high points of system to release trapped air. Use drains installed at low points for complete draining of liquid.

3. Check expansion tanks to determine that they are not air bound and that system is full of water.

4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the design pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed either 90 percent of specified minimum yield strength or 1.7 times "SE" value in Appendix A of ASME B31.9, "Building Services Piping."

5. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.

6. Prepare written report of testing.

3.9 ADJUSTING

A. Mark calibrated nameplates of pump discharge valves after hydronic system balancing has been completed, to permanently indicate final balanced position.

B. Perform these adjustments before operating the system:

1. Open valves to fully open position. Close coil bypass valves.

2. Check pump for proper direction of rotation.

3. Set automatic fill valves for required system pressure.

4. Check air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).

5. Set temperature controls so all coils are calling for full flow.

6. Check operation of automatic bypass valves.

7. Check and set operating temperatures of boilers to design requirements.

8. Lubricate motors and bearings.

3.10 CLEANING

A. Flush hydronic piping systems with clean water. Remove and clean or replace strainer screens. After cleaning and flushing hydronic piping systems, but before balancing, remove disposable fine-mesh strainers in pump suction diffusers.
END OF SECTION 232113
SECTION 233113 - METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes rectangular, round, and flat-oval metal ducts and plenums for heating, ventilating, and air-conditioning systems in pressure classes from minus 2- to plus 10-inch wg.

1.3 DEFINITIONS
A. Thermal Conductivity and Apparent Thermal Conductivity (k-Value): As defined in ASTM C 168. In this Section, these values are the result of the formula Btu x in./h x sq. ft. x deg F or W/m x K at the temperature differences specified. Values are expressed as Btu or W.

 1. Example: Apparent Thermal Conductivity (k-Value): 0.26 or 0.037.

1.4 SYSTEM DESCRIPTION
A. Duct system design, as indicated, has been used to select and size air-moving and -distribution equipment and other components of air system. Changes to the layout or configuration of the duct systems, required to resolve an interference with an existing field condition or work of other trades, must be specifically approved in writing by Engineer. Accompany requests for layout modifications with calculations showing that proposed layout will provide original design results without increasing system total pressure. The Contractor is responsible for providing all ductwork, fittings, etc. as required to accomplish duct modifications at no additional cost to the Owner.

B. All concealed and exposed rectangular ductwork and concealed round duct shall be galvanized steel. All exposed round ductwork shall be double-wall spiral duct.

1.5 SUBMITTALS
A. Shop drawings are to be provided for review and approved by the engineer two weeks prior to installation.

B. Product Data: For duct liner and sealing materials.

C. Shop Drawings: Provide 2 sets of drawings for review on 3/8 scale prints of the following:

 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
 2. Duct layout indicating pressure classifications and sizes on plans.
3. Fittings.
4. Reinforcement and spacing.
5. Seam and joint construction.
6. Penetrations through fire-rated and other partitions.
7. Terminal unit installations.
8. Hangers and supports, including methods for building attachment, vibration isolation, seismic restraints, and duct attachment.

D. Coordination Drawings: Reflected ceiling plans drawn to scale and coordinating penetrations and ceiling-mounted items. Show the following:
 1. Ceiling suspension assembly members.
 2. Other systems installed in same space as ducts.
 3. Ceiling- and wall-mounted access doors and panels required to provide access to dampers and other operating devices.
 4. Coordination with ceiling-mounted items, including lighting fixtures, diffusers, grilles, speakers, sprinkler heads, access panels, and special moldings.

E. Welding Certificates: Copies of certificates indicating welding procedures and personnel comply with requirements in "Quality Assurance" Article.

F. Field Test Reports: Indicate and interpret test results for compliance with performance requirements.

G. Record Drawings: Indicate actual routing, fitting details, reinforcement, support, and installed accessories and devices.

1.6 QUALITY ASSURANCE

B. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," unless otherwise indicated.

C. Comply with NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems," unless otherwise indicated.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Deliver sealant and firestopping materials to site in original unopened containers or bundles with labels indicating manufacturer, product name and designation, color, expiration period for use, pot life, curing time, and mixing instructions for multicomponent materials.

B. Store and handle sealant and firestopping materials according to manufacturer's written recommendations.

C. Deliver and store stainless-steel sheets with mill-applied adhesive protective paper maintained through fabrication and installation.
PART 2 - PRODUCTS

2.1 SHEET METAL MATERIALS

A. Galvanized, Sheet Steel: Lock-forming quality; ASTM A 653/A 653M, G90 coating designation; mill-phosphatized finish for surfaces of ducts exposed to view.

B. Stainless Steel: ASTM A 480/A 480M, Type 316, sheet form with No. 4 finish for surfaces of ducts exposed to view; and Type 304, sheet form with No. 1 finish for concealed ducts.

C. Aluminum Sheets: ASTM B 209, Alloy 3003, Temper H14, sheet form with standard, one-side bright finish for ducts exposed to view and with mill finish for concealed ducts.

D. Reinforcement Shapes and Plates: Galvanized steel reinforcement where installed on galvanized, sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.

E. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for 36-inch length or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.2 SEALANT MATERIALS

A. Joint and Seam Sealants, General: The term "sealant" is not limited to materials of adhesive or mastic nature but includes tapes and combinations of open-weave fabric strips and mastics.

1. Tape Sealing System: Woven-fiber tape impregnated with a gypsum mineral compound and a modified acrylic/silicone activator to react exothermically with tape to form a hard, durable, airtight seal.

2. Joint and Seam Sealant: One-part, nonsag, solvent-release-curing, polymerized butyl sealant, formulated with a minimum of 75 percent solids.

3. Flanged Joint Mastics: One-part, acid-curing, silicone, elastomeric joint sealants, complying with ASTM C 920, Type S, Grade NS, Class 25, Use O.

2.3 HANGERS AND SUPPORTS

A. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for building materials.

1. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.

2. Exception: Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.

B. Hanger Materials: Galvanized, sheet steel or round, threaded steel rod.

1. Hangers Installed in Corrosive Atmospheres: Electrogalvanized, all-thread rod or galvanized rods with threads painted after installation.

2. Straps and Rod Sizes: Comply with SMACNA’s "HVAC Duct Construction Standards--Metal and Flexible" for sheet steel width and thickness and for steel rod diameters.

C. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
D. Trapeze and Riser Supports: Steel shapes complying with ASTM A 36/A 36M.
 3. Supports for Aluminum Ducts: Aluminum support materials, unless materials are electrolytically separated from ductwork.

2.4 RECTANGULAR DUCT FABRICATION

A. General: Fabricate ducts, elbows, transitions, offsets, branch connections, and other construction with galvanized, sheet steel, according to SMACNA’s "HVAC Duct Construction Standards--Metal and Flexible." Comply with requirements for metal thickness, reinforcing types and intervals, tie-rod applications, and joint types and intervals.
 1. Lengths: Fabricate rectangular ducts in lengths appropriate to reinforcement and rigidity class required for pressure classification.
 2. Materials: Free from visual imperfections such as pitting, seam marks, roller marks, stains, and discolorations.

B. Fabricate truck wash exhaust ducts with 0.0500-inch-thick stainless steel. Weld and flange seams and joints. All hangers, supports, and accessories shall be stainless steel.

C. Static-Pressure Classifications: Unless otherwise indicated, construct ducts to the following:
 1. Supply Ducts: 3-inch wg positive pressure for constant volume systems. 6-inch wg positive pressure for variable volume systems.
 2. Return Ducts: 2-inch wg, negative pressure for constant volume systems. 4-inch wg negative pressure for variable volume systems.
 3. Exhaust Ducts: 2-inch wg, negative pressure.

D. Cross Breaking or Cross Beading: Cross break or cross bead duct sides 19 inches and larger and 0.0359 inch thick or less, with more than 10 sq. ft. of unbraced panel area, unless ducts are lined.

2.5 ROUND DUCT FABRICATION

A. General: Diameter as applied to flat-oval ducts in this Article is the diameter of the size of round duct that has a circumference equal to perimeter of a given size of flat-oval duct.

B. Round Ducts: Fabricate supply ducts of galvanized steel according to SMACNA’s "HVAC Duct Construction Standards--Metal and Flexible."

C. Stainless Steel Ducts: All seams and joints shall be externally welded liquid tight using Gas Tungsten Arc Welding (GTAW, TIG), with thoriated electrodes and filler equivalent to the type of stainless steel matching the material of the ductwork. All welding shall be done in accordance with ANSI/AWS D9.1.

D. Double-Wall Spiral Ducts: Fabricate double-wall (insulated) ducts with an outer shell and an inner liner. Dimensions indicated on internally insulated ducts are inside dimensions.
 1. Thermal Conductivity (k-Value): 0.26 at 75 deg F mean temperature.
2. Outer Shell: Base outer-shell metal thickness on actual outer-shell dimensions. Fabricate outer-shell lengths 2 inches longer than inner shell and insulation, and in metal thickness specified for single-wall duct.

3. Insulation: 1-inch thick fibrous-glass insulation, unless otherwise indicated. Terminate insulation where internally insulated duct connects to single-wall duct or uninsulated components. Terminate insulation and reduce outer duct diameter to inner liner diameter.

4. Inner Liner: Fabricate round and flat-oval inner liners with sheet metal. Use the following sheet metal thicknesses and seam construction:

 a. Ducts 3 to 8 Inches in Diameter: 0.019 inch with standard spiral seam construction.
 b. Ducts 9 to 42 Inches in Diameter: 0.019 inch with single-rib spiral seam construction.
 c. Ducts 44 to 60 Inches in Diameter: 0.022 inch with single-rib spiral seam construction.
 d. Ducts 62 to 88 Inches in Diameter: 0.034 inch with standard spiral seam construction.

5. Maintain concentricity of liner to outer shell by mechanical means. Retain insulation from dislocation by mechanical means.

6. Ducts are to be acid washed and prepared with primer. General Contractor is to paint ducts. Coordinate with G.C. to paint hung or in shop.

2.6 ROUND SUPPLY AND EXHAUST FITTING FABRICATION

A. 90-Degree Tees and Laterals and Conical Tees: Fabricate to comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible," with metal thicknesses specified for longitudinal seam straight duct.

B. Diverging-Flow Fittings: Fabricate with a reduced entrance to branch taps with no excess material projecting from body onto branch tap entrance. All branch ducts are to be connected using diversion fittings.

C. Elbows: Fabricate in die-formed, gored, pleated, or mitered construction. Fabricate bend radius of die-formed, gored, and pleated elbows one and one-half times elbow diameter. Unless elbow construction type is indicated, fabricate elbows as follows:

 1. Mitered-Elbow Radius and Number of Pieces: Welded construction complying with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible," unless otherwise indicated.

 2. Round Mitered Elbows: Welded construction with the following metal thickness for pressure classes from minus 2- to plus 2-inch wg:

 a. Ducts 3 to 26 Inches in Diameter: 0.028 inch.
 b. Ducts 27 to 36 Inches in Diameter: 0.034 inch.
 c. Ducts 37 to 50 Inches in Diameter: 0.040 inch.
 d. Ducts 52 to 60 Inches in Diameter: 0.052 inch.
 e. Ducts 62 to 84 Inches in Diameter: 0.064 inch.
3. Round Mitered Elbows: Welded construction with the following metal thickness for pressure classes from 2- to 10-inch wg:
 a. Ducts 3 to 14 Inches in Diameter: 0.028 inch.
 b. Ducts 15 to 26 Inches in Diameter: 0.034 inch.
 c. Ducts 27 to 50 Inches in Diameter: 0.040 inch.
 d. Ducts 52 to 60 Inches in Diameter: 0.052 inch.
 e. Ducts 62 to 84 Inches in Diameter: 0.064 inch.

4. 90-Degree, Two-Piece, Mitered Elbows: Use only for supply systems, or exhaust systems for material-handling classes A and B; and only where space restrictions do not permit using 1.5 bend radius elbows. Fabricate with single-thickness turning vanes.

5. Round Elbows, 8 Inches and Smaller: Fabricate die-formed elbows for 45- and 90-degree elbows and pleated elbows for 30, 45, 60, and 90 degrees only. Fabricate nonstandard bend-angle configuration or nonstandard diameter elbows with gored construction.

6. Round Elbows, 9 through 14 Inches: Fabricate gored or pleated elbows for 30, 45, 60, and 90 degrees, unless space restrictions require a mitered elbow. Fabricate nonstandard bend-angle configuration or nonstandard diameter elbows with gored construction.

7. Round Elbows, Larger Than 14 Inches, and All Flat-Oval Elbows: Fabricate gored elbows, unless space restrictions require a mitered elbow.

8. Die-Formed Elbows for Sizes through 8 Inches and All Pressures: 0.040 inch thick with two-piece welded construction.

9. Round Gored-Elbow Metal Thickness: Same as non-elbow fittings specified above.

10. Pleated Elbows for Sizes through 14 Inches and Pressures through 10-Inch wg: 0.022 inch.

D. Double-Wall (Insulated) Fittings: Fabricate double-wall (insulated) fittings with an outer shell and an inner liner. Dimensions indicated on internally insulated ducts are inside dimensions.

 1. Thermal Conductivity (k-Value): 0.26 at 75 deg F mean temperature.
 2. Outer Shell: Base outer-shell metal thickness on actual outer-shell dimensions. Fabricate outer-shell lengths 2 inches longer than inner shell and insulation. Use the same metal thicknesses for outer duct as for uninsulated fittings.
 3. Insulation: 1-inch thick fibrous-glass insulation, unless otherwise indicated. Terminate insulation where internally insulated duct connects to single-wall duct or uninsulated components. Terminate insulation and reduce outer duct diameter to nominal single-wall size.
 4. Solid Inner Liner: Fabricate round and flat-oval inner liners with solid sheet metal of thickness listed below:
 a. Ducts 3 to 34 Inches in Diameter: 0.028 inch.
 b. Ducts 35 to 58 Inches in Diameter: 0.034 inch.
 c. Ducts 60 to 88 Inches in Diameter: 0.040 inch.
 5. Maintain concentricity of liner to outer shell by mechanical means. Retain insulation from dislocation by mechanical means.
3.1 DUCT INSTALLATION, GENERAL

A. Duct installation requirements are specified in other applicable Sections. Drawings indicate general arrangement of ducts, fittings, and accessories.

B. Construct and install each duct system for the specific duct pressure classification indicated.

C. Install round ducts in lengths not less than 12 feet, unless interrupted by fittings.

D. Install ducts with fewest possible joints.

E. Install fabricated fittings for changes in directions, changes in size and shape, and connections.

F. Install couplings tight to duct wall surface with a minimum of projections into duct.

G. Provide an additional five hundred pounds of ductwork to accommodate changes required to resolve interferences or as directed by the engineer.

H. Install ducts, unless otherwise indicated, vertically and horizontally, parallel and perpendicular to building lines; avoid diagonal runs.

I. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

J. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.

K. Conceal ducts from view in finished spaces. Do not encase horizontal runs in solid partitions, unless specifically indicated.

L. Coordinate layout with suspended ceiling, fire- and smoke-control dampers, lighting layouts, and similar finished work.

M. Electrical Equipment Spaces: Route ductwork to avoid passing through transformer vaults and electrical equipment spaces and enclosures.

N. Non-Fire-Rated Partition Penetrations: Where ducts pass through interior partitions and exterior walls, and are exposed to view, conceal space between construction opening and duct or duct insulation with sheet metal flanges of same metal thickness as duct. Overlap opening on four sides by at least 1-1/2 inches.

O. Fire-Rated Partition Penetrations: Where ducts pass through interior partitions and exterior walls, install appropriately rated fire damper, sleeve, and firestopping sealant. Fire and smoke dampers are specified elsewhere.

3.2 SEAM AND JOINT SEALING

A. General: Seal duct seams and joints according to the duct pressure class indicated and as described in SMACNA's "HVAC Duct Construction Standards--Metal and Flexible."

B. Pressure Classification Less Than 2-Inch wg: Transverse joints.
C. Seal externally insulated ducts before insulation installation.

3.3 HANGING AND SUPPORTING

A. Install rigid round, rectangular, and flat-oval metal duct with support systems indicated in SMACNA's "HVAC Duct Construction Standards--Metal and Flexible."

B. Support horizontal ducts within 24 inches of each elbow and within 48 inches of each branch intersection.

C. Support vertical ducts at a maximum interval of 16 feet and at each floor.

D. Install upper attachments to structures with an allowable load not exceeding one-fourth of failure (proof-test) load.

E. Install concrete inserts before placing concrete.

F. Install powder-actuated concrete fasteners after concrete is placed and completely cured.

3.4 CONNECTIONS

A. Connect equipment with flexible connectors according to other applicable sections.

B. For branch, outlet and inlet, and terminal unit connections, comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible."

C. Provide volume dampers for each air device as close to the branch and as far from the air device as possible. Where branches produce excessive audible noise due to pressure gradients across damper provide additional dampers up stream of the noisy damper.

3.5 FIELD QUALITY CONTROL

A. Disassemble, reassemble, and seal segments of systems as required to accommodate leakage testing and as required for compliance with test requirements.

B. Conduct tests, in presence of Engineer, at static pressures equal to maximum design pressure of system or section being tested. If pressure classifications are not indicated, test entire system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure. Give seven days' advance notice for testing.

C. Determine leakage from entire system

D. Maximum Allowable Leakage: Comply with requirements for Leakage Classification 3 for round and flat-oval ducts, Leakage Classification 12 for rectangular ducts in pressure classifications less than and equal to 2-inch wg (both positive and negative pressures), and Leakage Classification 6 for pressure classifications from 2- to 10-inch wg.

E. Remake leaking joints and retest until leakage is less than maximum allowable.

F. Leakage Test: Perform tests according to SMACNA's "HVAC Air Duct Leakage Test Manual."
3.6 ADJUSTING

A. Adjust volume-control dampers in ducts, outlets, and inlets to achieve design airflow.

B. Refer to Section "Testing, Adjusting, and Balancing" for detailed procedures.

3.7 CLEANING

A. After completing system installation, including outlet fittings and devices, inspect the system. Vacuum ducts before final acceptance to remove dust and debris.

END OF SECTION
SECTION 233300 - DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Backdraft dampers.
3. Fire and smoke dampers.
4. Duct-mounted access doors and panels.
5. Flexible ducts.
6. Flexible connectors.
7. Duct accessory hardware.

1.3 SUBMITTALS

A. Product Data: For the following:

1. Backdraft dampers.
3. Fire and smoke dampers.
4. Duct-mounted access doors and panels.
5. Flexible ducts.

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loadings, required clearances, method of field assembly, components, location, and size of each field connection. Detail the following:

2. Fire- and smoke-damper installations, including sleeves and duct-mounted access doors and panels.

C. Product Certificates: Submit certified test data on dynamic insertion loss; self-noise power levels; and airflow performance data, static-pressure loss, dimensions, and weights.

1.4 QUALITY ASSURANCE

A. NFPA Compliance: Comply with the following NFPA standards:

1. NFPA 90A, "Installation of Air Conditioning and Ventilating Systems."
2. NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."
1.5 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed, are packaged with protective covering for storage, and are identified with labels describing contents.

1. Fusible Links: Furnish quantity equal to 10 percent of amount installed.

2. Fire Dampers: Furnish an additional five fire dampers of the largest size on the project.

3. Volume Dampers: Furnish quantity equal to 10 percent of amount installed.

PART 2 - PRODUCTS

2.1 BACKDRAFT DAMPERS

A. Description: Suitable for horizontal or vertical installations.

B. Frame: 0.052-inch-thick, galvanized, sheet steel, with welded corners and mounting flange or 0.063-inch-thick extruded aluminum, with mounting flange.

C. Blades: 0.025-inch-thick, roll-formed aluminum or 0.050-inch-thick aluminum sheet.

D. Blade Seals: Vinyl or neoprene.

E. Blade Axles: Nonferrous or galvanized steel.

F. Tie Bars and Brackets: Aluminum or galvanized steel.

G. Return Spring: Adjustable tension.

2.2 MANUAL-VOLUME DAMPERS

A. General: Factory fabricated with required hardware and accessories. Stiffen damper blades for stability. Include locking device to hold single-blade dampers in a fixed position without vibration. Close duct penetrations for damper components to seal duct consistent with pressure class.

1. Pressure Classifications of 3-Inch wg or Higher: End bearings or other seals for ducts with axles full length of damper blades and bearings at both ends of operating shaft.

B. Standard Volume Dampers: Multiple- or single-blade, parallel- or opposed-blade design as indicated, standard leakage rating, and suitable for horizontal or vertical applications.

1. Steel Frames: Hat-shaped, galvanized, sheet steel channels, minimum of 0.064-inch-thick, with mitered and welded corners; frames with flanges where indicated for attaching to walls; and flangeless frames where indicated for installing in ducts.

2. Aluminum Frames: Hat-shaped, 0.10-inch-thick, aluminum sheet channels; frames with flanges where indicated for attaching to walls; and flangeless frames where indicated for installing in ducts.

3. Roll-Formed Steel Blades: 0.064-inch-thick, galvanized, sheet steel.

4. Roll-Formed Aluminum Blades: 0.10-inch-thick aluminum sheet.

5. Extruded-Aluminum Blades: 0.050-inch-thick extruded aluminum.
7. Tie Bars and Brackets: Aluminum or galvanized steel.

C. Low-Leakage Volume Dampers: Multiple- or single-blade, parallel- or opposed-blade design as indicated, low-leakage rating, and suitable for horizontal or vertical applications.

1. Steel Frames: Hat-shaped, galvanized, sheet steel channels, minimum of 0.064-inch thick, with mitered and welded corners; frames with flanges where indicated for attaching to walls; and flangeless frames where indicated for installing in ducts.
2. Aluminum Frames: Hat-shaped, 0.063-inch-thick, extruded-aluminum channels; frames with flanges where indicated for attaching to walls; and flangeless frames where indicated for installing in ducts.
3. Roll-Formed Steel Blades: 0.064-inch-thick, galvanized, sheet steel.
4. Roll-Formed Aluminum Blades: 0.10-inch-thick aluminum sheet.
5. Extruded-Aluminum Blades: 0.050-inch-thick extruded aluminum.
8. Tie Bars and Brackets: Aluminum or galvanized steel.

D. Damper Hardware: Zinc-plated, die-cast core with dial and handle made of 3/32-inch-thick zinc-plated steel, and a 3/4-inch hexagon locking nut. Include center hole to suit damper operating-rod size. Include elevated platform for insulated duct mounting.

2.3 FIRE DAMPERS

A. General: Labeled to UL 555.

B. Fire Rating: One and one-half hours.

C. Frame: SMACNA Type B with blades out of airstream; fabricated with roll-formed, 0.034-inch-thick galvanized steel; with mitered and interlocking corners.

D. Mounting Sleeve: Factory- or field-installed galvanized, sheet steel.

1. Minimum Thickness: 0.052 inch or 0.138 inch thick as indicated, and length to suit application.
2. Exceptions: Omit sleeve where damper frame width permits direct attachment of perimeter mounting angles on each side of wall or floor, and thickness of damper frame complies with sleeve requirements.

E. Mounting Orientation: Vertical or horizontal as indicated.

F. Blades: Roll-formed, interlocking, 0.034-inch-thick, galvanized, sheet steel. In place of interlocking blades, use full-length, 0.034-inch-thick, galvanized steel blade connectors.

G. Horizontal Dampers: Include a blade lock and stainless-steel negator closure spring.

H. Fusible Link: Replaceable, 165 or 212 deg F rated as indicated.

2.4 DUCT-MOUNTED ACCESS DOORS AND PANELS

A. General: Fabricate doors and panels airtight and suitable for duct pressure class.
B. Frame: Galvanized, sheet steel, with bend-over tabs and foam gaskets.

C. Door: Double-wall, galvanized, sheet metal construction with insulation fill and thickness, and number of hinges and locks as indicated for duct pressure class. Include vision panel where indicated. Include 1-by-1-inch butt or piano hinge and cam latches.

D. Seal around frame attachment to duct and door to frame with neoprene or foam rubber.

E. Insulation: 1-inch-thick, fibrous-glass or polystyrene-foam board.

2.5 FLEXIBLE CONNECTORS

A. General: Flame-retarded or noncombustible fabrics, coatings, and adhesives complying with UL 181, Class 1.

B. Standard Metal-Edged Connectors: Factory fabricated with a strip of fabric 3-1/2 inches wide attached to two strips of 2-3/4-inch-wide, 0.028-inch-thick, galvanized, sheet steel or 0.032-inch aluminum sheets. Select metal compatible with connected ducts.

1. Minimum Weight: 26 oz./sq. yd.
2. Tensile Strength: 480 lbf/inch in the warp, and 360 lbf/inch in the filling.

2.6 FLEXIBLE DUCTS

A. General: Comply with UL 181, Class 1.

B. Flexible Ducts, Uninsulated: Spiral-wound steel spring with flameproof vinyl sheathing.

C. Flexible Ducts, Insulated: Factory-fabricated, insulated, round duct, with an outer jacket enclosing 1-1/2-inch-thick, glass-fiber insulation around a continuous inner liner.

1. Reinforcement: Steel-wire helix encapsulated in inner liner.
2. Outer Jacket: Glass-reinforced, silver Mylar with a continuous hanging tab, integral fibrous-glass tape, and nylon hanging cord.
3. Inner Liner: Polyethylene film.

D. Pressure Rating: 6-inch wg positive, 1/2-inch wg negative.

2.7 ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments, and length to suit duct insulation thickness.

B. Flexible Duct Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action, in sizes 3 to 18 inches to suit duct size.

C. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install duct accessories according to applicable details shown in SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for metal ducts.

B. Provide test holes at fan inlet and outlet and elsewhere as indicated.

C. Install fire dampers according to manufacturer's UL-approved written instructions.
 1. Install fusible links in fire dampers.
 2. Provide an additional five fire dampers to be used as directed by the Engineer.

D. Install duct access panels downstream from volume dampers, fire dampers, turning vanes, control devices and equipment.
 1. Install duct access panels to allow access to interior of ducts for cleaning, inspecting, adjusting, and maintaining accessories and terminal units.
 2. Install access panels on side of duct where adequate clearance is available.
 3. Install access panels elsewhere as shown on the drawings.

E. Label access doors according to other applicable sections.

3.2 ADJUSTING

A. Adjust duct accessories for proper settings.

B. Adjust fire dampers for proper action.

C. Final positioning of manual-volume dampers is specified in Section "Testing, Adjusting, and Balancing."

END OF SECTION
SECTION 233713 - DIFFUSERS, REGISTERS, AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes ceiling- and wall-mounted diffusers, registers, and grilles.

1.3 DEFINITIONS
A. Diffuser: Circular, square, or rectangular air distribution outlet, generally located in the ceiling and comprised of deflecting members discharging supply air in various directions and planes and arranged to promote mixing of primary air with secondary room air.

B. Grille: A louvered or perforated covering for an opening in an air passage, which can be located in a sidewall, ceiling, or floor.

C. Register: A device capable of both directing and throttling supply or return air.

1.4 SUBMITTALS
A. Product Data: For each model indicated, include the following:
 1. Data Sheet: For each type of air outlet and inlet, and accessory furnished; indicate construction, finish, and mounting details.
 2. Performance Data: Include throw and drop, static-pressure drop, and noise ratings for each type of air outlet and inlet.
 3. Schedule of diffusers, registers, and grilles indicating drawing designation, room location, quantity, model number, size, and accessories furnished.
 4. Assembly Drawing: For each type of air outlet and inlet; indicate materials and methods of assembly of components.

B. Coordination Drawings: Reflected ceiling plans and wall elevations drawn to scale to show locations and coordination of diffusers, registers, and grilles with other items installed in ceilings and walls.

C. Samples for Initial Selection: Manufacturer's color charts showing the full range of colors available for diffusers, registers, and grilles with factory-applied color finishes.

D. Samples for Verification: Of diffusers, registers, and grilles, in manufacturer's standard sizes, showing the full range of colors. Prepare Samples from the same material to be used for the Work.
1.5 QUALITY ASSURANCE

A. Product Options: Drawings and schedules indicate specific requirements of diffusers, registers, and grilles and are based on the specific requirements of the systems indicated. Other manufacturers' products with equal performance characteristics may be considered. Refer to Division 1 Section "Substitutions."

C. No outlet device shall produce a discharge velocity that causes sound levels in excess of 25 sones, or have an NC rating greater than 25.

PART 2 - PRODUCTS

2.1 MANUFACTURED UNITS

A. Diffusers, registers, and grilles are scheduled on Drawings. Provide diffusers, registers and grilles by one of the following approved manufacturers: Titus, Price, Anemostat.

2.2 SOURCE QUALITY CONTROL

A. Testing: Test performance according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment. Do not proceed with installation until unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install diffusers, registers, and grilles level and plumb, according to manufacturer's written instructions, Coordination Drawings, original design, and referenced standards.

B. Duct/Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practicable. For units installed in lay-in ceiling panels, locate units in the center of the panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Provide one additional diffusers/registers of each type and size used on the project to accommodate ductwork revisions required to resolve interferences or as directed by the Engineer.
D. Install diffusers, registers, and grilles with airtight connection to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

3.4 CLEANING

A. After installation of diffusers, registers, and grilles, inspect exposed finish. Clean exposed surfaces to remove burrs, dirt, and smudges. Replace diffusers, registers, and grilles that have damaged finishes.

END OF SECTION
SECTION 23 74 13 - DEDICATED OUTDOOR AIR UNITS (PACKAGED)

1. GENERAL

1.1 SECTION INCLUDES

A. Packaged outdoor air unit.
B. Hot water coil
C. Refrigeration components.
D. Unit operating controls.
E. Roof curb with horizontal duct connections.
F. Electrical power connections.
G. Operation and maintenance service.
H. Special sequences required.

1.2 REFERENCES

A. NFPA 90 A & B - Installation of Air Conditioning and Ventilation Systems and Installation of Warm Air Heating and Air Conditioning Systems.
B. ETL Listed and Labeled
C. AHRI 920, "Performance Rating of DX-Dedicated Outdoor Air System Units."
1.3 SUBMITTALS

A. Submit unit performance data including: capacity, nominal and operating performance.

B. Submit Moisture Removal Capacity (MRC) as defined and tested per AHRI-920.

C. Submit Moisture Removal Efficiency (MRE) as defined and tested per AHRI-920.

D. Submit Mechanical Specifications for unit and accessories describing construction, components and options.

E. Submit shop drawings indicating overall dimensions as well as installation, operation and services clearances. Indicate lift points and recommendations and center of gravity. Indicate unit shipping, installation and operating weights including dimensions.

F. Submit data on electrical requirements and connection points. Include recommended wire and fuse sizes or MCA, sequence of operation, safety and start-up instructions.

G. Shop drawings submitted for approval shall be accompanied by a copy of the purchase agreement between the Contractor and an authorized service representative of the manufacturer for check, test and start up and first year service.

H. Submit BACnet integration guide detailing all the data points available for integration. At a minimum, the BACnet guide shall include:

1. BACnet Protocol Implementation Conformance Statement (PICS)

2. Object types: descriptions and configuration

3. BACnet protocol: data link layers, device address binding, networking options, and character sets

4. Object data points and configurations. Object Types with descriptions and configurations for each point (Required Properties Read, Properties Written, Optional Properties Read, Ability to Create, Ability to Delete)

5. Interoperability Building Blocks

6. Object Data Points and Diagnostic Data Points (for each data point)

7. BACnet Type (AI, AV, BV, MI, MV, etc) (for each data point)

8. BACnet Property Values (for each data point)
9. Baud Rate and Supported Character Sets

10. Inputs With Alarming Capabilities

I. **Submit special sequence of operation including:**

 1. **Zone temperature sensor averaging for space comfort control.**

 2. **Zone humidity sensor peak zone control for space comfort control.**

J. **Operation and Maintenance Data:** For packaged air conditioners to include in emergency, operation, and maintenance manuals.

K. **Warranties:** Special warranties specified in this Section

L. Failure to submit any of these items or an impartial submittal will result in submittal rejection. Piece meal submittals are not acceptable.

1.4 **DELIVERY, STORAGE and HANDLING**

 A. Comply with manufacturer's installation instructions for rigging, unloading, and transporting units.

 B. Protect units from physical damage. Leave factory shipping covers in place until installation.

1.5 **WARRANTY**

 A. Provide whole unit warranty (parts and labor) for two years from start-up or 30 months from shipment, whichever occurs first.

 B. Provide 3rd through fifth year extended parts only warranty for compressors.

1.6 **REGULATORY REQUIREMENTS**

 A. Unit shall conform to the appropriate standards listed in Section 103.

 1. In the event the unit is not approved by a Nationally Recognized Testing Laboratory (NRTL) for compliance with the appropriate standards, the manufacturer shall, at manufacturer’s expense, provide for a field certification and labeling of unit by an NRTL to the appropriate standards. Manufacturer shall, at manufacturer’s cost, complete any and all modifications required by NRTL prior to certification and field labeling. Manufacturer shall include coverage of all modifications in unit warranty.

1.7 **EXTRA MATERIALS**

 A. Provide one set of filters.
2. PRODUCTS

2.1 SUMMARY

A. The contractor shall furnish and install packaged outdoor air unit(s) as shown and scheduled on the contract documents. The unit(s) shall be installed in accordance with this specification and perform at the specified conditions as scheduled.

B. APPROVED MANUFACTURERS

1. Trane: Model OAU (Basis of Design)

2. Addison: TRS-Series

3. Innovent C Series CAHU

4. Or Approved Equal

2.2 GENERAL UNIT DESCRIPTION

A. Unit(s) furnished and installed shall be packaged outdoor air unit(s) as scheduled on contract documents and described in these specifications. Unit(s) shall be designed for dehumidification, cooling and/or heating of 100% Outdoor Air. For dehumidification and cooling modes, the evaporator temperature shall be monitored, reported at unit controller. Compressor controls shall modulate capacity to maintain evaporator leaving set point. Compressor Hot Gas Reheat (HGRH) shall be factory installed. To prevent rehydration of evaporator condensate the reheat coil face shall be located a minimum of 6” downstream from the leaving face of the evaporator coil (no exceptions). Heating system shall include modulating controls. Compressor on-off only or primary heating on-off only controls shall not be acceptable control strategies.

1. Unit shall be down-flow with an elevated curb for horizontal airflow.

2. Unit shall have special sequencing to provide:

 a. Zone temperature sensor averaging for space comfort control.

 b. Zone humidity sensor peak zone control for space comfort control.

B. Before shipment, each unit(s) shall be leak tested, dehydrated, charged with refrigerant (R-410A) and compressor oil, and factory run tested for proper control operation.

C. The condenser coils must be aluminum fin, mechanically bonded to copper tubing.
D. Direct-drive, vertical discharge condenser fans must be provided with built-in thermal overload protection.

E. Unit(s) shall have labels, decals, and/or tags to aid in the service of the unit and indicate caution areas.

F. Unit(s) shall be dedicated downflow or dedicated horizontal airflow as manufactured.

G. Wiring internal to the unit shall be colored and numbered for identification.

H. Units shall be horizontal airflow design.

2.3 UNIT CASING

A. Cabinet: Zinc-coated, heavy gauge, galvanized steel. Exterior surfaces shall be cleaned, phosphatized, and finished with a weather-resistant baked enamel finish. Unit’s surface shall be tested 672 hours in a salt spray test in compliance with ASTM B45. Structural members shall be a minimum of 16 gauge with access doors and removable panels of minimum 20 gauge.

B. Panels: 2” double-wall foamed panel construction throughout the indoor section of unit to provide nonporous, cleanable interior surfaces. All interior seams exposed to airflow shall be sealed.

C. Insulation: 2” polyisocyanurate Foam metal encapsulated with no exposed edges. Initial R value of 6.6 per inch of thickness.

D. Cabinet construction shall provide access panels for all parts requiring service.

E. Cabinet top cover shall be one piece construction or where seams exist, it shall be double-hemmed and gasket-sealed.

F. Panels: Water- and air-tight hinged panels with handles shall provide access to filters, heating section; optional ERV and power exhaust fan section, supply air fan section, evaporator coil section, and unit control section. Door hardware shall be oriented to allow the door swing to be reversed.

1. Latches with hold down hooks will be factory installed on hinged access doors.

G. Unit shall include a motor operated outside air damper and optional return air damper assembly constructed of galvanized steel, and air foil blades with rubber edge seals. Damper blades shall be designed to have no more than 4 cfm of leakage per sq ft of damper area and shall exceed ASHRAE 90.1 requirements. Linkage shall be concealed out of airstream, within the damper frame to reduce pressure and noise. Damper assembly shall be controlled by a spring return two position for fully modulating actuator. Dampers shall not be sized for air velocities exceeding 2000 fpm.
H. Type 304 Stainless steel drain pan sloped in two directions to ensure positive drainage. Pan shall have a minimum depth of 2”. Seams exposed to standing water shall be welded liquid tight. Base of pan shall be insulated with 1” thick foam insulation.

I. Provide openings either on side of unit or thru the base for power, control and gas connections.

J. The base of the unit shall have provisions for forklift and crane lifting

2.4 POWER WIRING

A. Field wiring access to be provided thru unit base into isolated enclosure with removable cover.

B. Power wiring to be single point connection.

C. Unit shall be factory wired to field wiring terminal block mounted in isolated enclosure.

D. Factory wired main power disconnect device, overcurrent and SCCA rated for total unit power connection.

E. Factory installed safety barrier shall isolate all high voltage components, mounted inside electrical compartment, to protect service personnel from incidental contact.

F. Factory wired Phase monitor shall be included as standard.

G. Factory to mount and wire optional 120 volt convenience outlet. Field wiring of convenience outlet not acceptable.

2.5 FANS AND MOTORS

A. Indoor fan shall be high efficiency backward curved impeller.

B. The indoor fan motor shall be an electronic commutated motor with integrated power electronics for variable motor speed.

C. Supply Fan & Exhaust fan to be fabricated with piezo-meter rings for airflow measuring.

D. Outdoor fans shall be direct drive with premium efficiency motors, statically and dynamically balanced, draw through in the vertical discharge position.

E. Provide shafts constructed of solid hot rolled steel, ground and polished, with key-way, and protectively coated with lubricating oil.

2.6 FILTERS: MERV-8 & MERV-13
A. Galvanized Mesh Bird Screen shall be installed on the intake of the unit.

B. In addition, one row of 2 inch MERV-8 rated prefilters (30 percent) and 2 inch MERV-13 final filter (80 percent) installed prior to the evaporator coil. Unit shall be equipped with a 6” filter rack upstream of the evaporator. Frame shall be field-adjustable to match any filter combination specified in the attached selection.

2.7 HOT WATER HEATING

A. The hot water coil is ARI performance certified and shall bear the ARI symbol. Tubes are to be mechanically expanded into fins (secondary surface) for maximum heat transfer. Materials are to be 5/8” diameter x (0.020) wall thickness. Secondary surface (fins) shall be of the plate-fin design using aluminum with die-formed collars. Fin design is waffle in a staggered tube pattern to meet performance requirements. Collars will hold fin spacing at specified density, and cover the entire tube surface. Fins are to be free of oils and oxidation.

B. Piping connections shall be on the SIDE of the unit. The coil shall have MPT connections constructed of copper.

C. Installing contractor shall weatherize (insulation, heat tracing, freeze pump, glycol, etc) all the hot water piping external to the building.

D. Water valves & freezstats shall be field supplied and field installed.

2.8 REFRIGERATION SYSTEM

A. Compressor: All units shall have direct-drive, hermetic, scroll type compressors or digital scroll with centrifugal type oil pumps.

B. Motor shall be suction gas-cooled and shall have a voltage utilization range of plus or minus 10 percent of unit nameplate voltage.

C. Internal overloads shall be provided with the scroll compressors.

D. Compressor shall be able to fully modulate from 20%-100%. Acceptable modulation shall be
 1. Digital scroll
 2. Variable speed compressor
 3. APR valve on 1st circuit

E. Each compressor shall have a crankcase heater to minimize the amount of liquid refrigerant present in the oil sump during off cycles.

F. Each compressor shall be mounted on rubber vibration isolators, to reduce the transmission of noise.
G. Provide each unit with 1 hermetically sealed refrigerant circuit(s) factory-supplied completely piped with liquid line filter-drier, liquid line charging port, suction and liquid line pressure ports, sight glass, and thermal expansion valve.

H. Provide each circuit with automatic reset high and low pressure switches for safety control.

2.9 EVAPORATOR CONDENSOR AND REHEAT COILS

A. Evaporator and hot gas reheat coils shall be constructed of copper tubes mechanically bonded to a configured aluminum plate fin.

B. Coils shall be leak tested at the factory to ensure pressure integrity. The evaporator coil, reheat coil and condenser coil shall be leak tested to 500 psig and pressure tested to 500 psig.

C. The condenser coil shall have a fin designed for ease of cleaning.

D. Evaporator coil shall have six interlaced rows for superior sensible and latent cooling with a maximum of 12 fpi.

E. Reheat coil shall be fully integrated into the supply air and fan system and capable of delivering design supply air temperature.

F. To prevent re-hydration of condensate from evaporator coil, the evaporator coil face and the hot gas reheat coil face shall be separated a minimum of six inches.

G. Condenser coil shall be provided with factory installed hail guards.

H. Unit shall be equipped with an adjustable 6” filter rack upstream of the evaporator to match the filter requirements specified in the Air Filtration section.

I. A special sequence shall be installed by the manufacturer to provide peak zone humidity control over multiple humidity zone sensors.

2.10 CONDENSER SECTION

A. Outdoor Fans: vertical discharge, direct drive fans constructed of glass reinforced polypropylene blades. Fans shall be low-noise and corrosion resistant. Other fan construction is not acceptable.

B. Fans shall be statically balanced.

2.11 POWER EXHAUST/RETURN SECTION

A. Provide, a factory installed power exhaust assembly that shall be designed to ventilate return air to atmosphere.
B. Fan wheel shall be a high efficiency backward curved impeller.

C. Exhaust fan to be fabricated with piezo-meter rings for airflow measuring.

D. The powered exhaust motor shall be an electronic commutated motor with integrated power electronics for variable motor speed.

E. Exhaust to ventilate through automatic louver located on both sides of unit cabinet.

2.12 2-POSITION OUTDOOR AND RETURN AIR DAMPERS - Class 1A

A. The unit shall have a factory installed and integrated 100% outdoor air hood with Class 1A rated damper controlled by direct coupled actuator and 2 inch permanent and washable aluminum mesh filters accessible through a hinged access panel. The unit is factory equipped with a return air damper controlled by a direct coupled actuator that is electrically interlocked with the outdoor air damper to allow 100% return air recirculation in the Unoccupied cooling mode.

2.13 OUTDOOR AIR SECTION ENERGY RECOVERY (ERV) WITH BYPASS DAMPERS

A. Energy recovery wheel performance shall be AHRI 1060 certified and bear the AHRI certified label. The rotating wheel heat exchanger is composed of a rotating cylinder in an insulated cassette frame complete with removable energy transfer media, seals, drive motor and drive belt. Energy transfer media shall be constructed of a durable synthetic lightweight polymer. The total energy recovery wheel is coated with a desiccant that shall be either Type-A silica gel or 3A molecular sieve and permanently bonded to the energy transfer media without the use of binders or adhesives. The lightweight polymer substrate will not degrade nor require additional coatings for application in marine or coastal environments. Coated segments are cleanable outside of the cabinet with detergent or alkaline coil cleaner and water. Desiccant will not dissolve nor deliquesce in the presence of water or high humidity.

B. Sensible and latent recovery efficiencies must be clearly documented through a testing program conducted in accordance with ASHRAE Standard 84 and AHRI 1060. The testing must have been conducted by a qualified independent organization. The performance test reports must be provided for engineering review as part of the submittals for this project.

C. The rotor design shall ensure laminar airflow to minimize parasitic pressure loss and to optimize the operating efficiency of the system fans. The pressure loss across the media shall be no greater than the scheduled pressure loss values. The energy wheel shall operate effectively up to 180 degrees F.

D. The wheel manufacturer must have been producing energy recovery wheels for a minimum of ten years.
E. The rotor shall be supplied with perimeter brush seals and face contact seals to minimize air leakage and wheel bypass.

F. The rotor media shall be supported by a structural aluminum hub and aluminum reinforcing spoke system. The rotor bearings must be greaseable and provide L10 life in excess of 20 years.

G. The cassette framework shall be made of galvanized steel to prevent corrosion.

H. The rotor must be driven by long-life polyurethane/polyester composite link belt system. The rotor/cassette shall be designed so that belt can be removed or serviced without the removal of the bearing. A 3 phase A/C gear motor shall be utilized to accommodate variable speed applications.

I. Where variable speed control is required for frost prevention, it must be accomplished by the use of a factory installed and wired A/C inverter. The variable speed drive system shall allow for a minimum 60:1 turndown ratio.

2.14 LOW VOLTAGE CONTROLS

A. Factory wired 24 volt control system complete with required transformers and fusing.

B. Main Control Module (MCM) shall prevent simultaneous operation of any modes and shall enable operation in Dehumidification, Cooling, Heating or Economizer mode based on programmed settings for (select one)

 1. Space conditions
 2. Outdoor air conditions and discharge air temperature

C. MCM shall accept separate setpoints for Occupied and Unoccupied states.

D. MCM shall control based on dew point design settings for Dehumidification and Economizer modes, and sensible temperature settings for heating and cooling modes.

E. MCM shall have onboard clock and scheduling function for occupancy.

F. MCM shall include non-volatile memory to retain all programmed values without the use of a battery, in the event of a power failure.

G. Factory installed and wired sensors shall monitor Outdoor Air (OA) temperature, humidity and evaporator leaving air temperature. If an Energy Recovery Ventilator (ERV) is chosen, factory installed and wired sensors shall monitor the supply ERV leaving air temperature and humidity.

H. Supply air sensor shall be furnished with unit. Installing contractor shall install
remote mounted supply air sensor in supply air duct and field wire to the unit.

I. Space temp and humidity sensor shall be furnished and field wired to unit by the installing contractor.

J. Fully modulating hot-gas reheat shall be enabled in dehumidification mode and cooling mode with modulation controlled by MCM to maintain (supply air temperature / space temperature).

K. System controls shall include anti-cycle timing and minimum compressor run/off-times.

L. Systems controls shall be digital, programmable type with access via factory installed and wired touchscreen, or through portable computer connection. All setpoints, unit functions, and status shall be accessible via the touchscreen or portable computer.

M. All low voltage field wiring connections shall be made at factory installed low voltage terminal strip.

N. A special sequence shall be provided by the manufacturer to deliver

1. Zone temperature sensor averaging for space comfort control.

2. Zone humidity sensor peak zone control for space comfort control.

2.15 BUILDING MANAGEMENT SYSTEM

A. Interface control module to Energy Management System to be furnished and mounted by rooftop unit manufacturer. Through this interface module, all Energy Management functions (specified in Energy Management Section) shall be performed. See Building Automation and Automatic Temperature Control System Specifications. The interface module with necessary controls and sensors shall all be factory mounted (not field mounted). The only field connection to Energy Management System shall be two wire communication link.

B. Provide open BACnet MS/TP interface.

2.16 CURB WITH HORIZONTAL DUCT CONNECTIONS

A. Contractor shall provide factory supplied 30” tall roof curb, 18 gauge perimeter made of zinc coated steel with supply and return air gasketing and wood nailer strips. Shipped either in one pieced or knocked down and provided with instructions for easy assembly.

1. Curb shall have 30” wide x 17-1/2” tall supply opening on the side to allow for horizontal airflow.
2. Curb shall have 30" wide x 17-1/2" tall return opening on the side to allow for horizontal airflow.

B. Curb shall be manufactured in accordance with the National Roofing Contractors Association guidelines.

2.17 OPTIONS AND ACCESSORIES TO BE PROVIDED IN THIS PROJECT

A. Hot water heat

B. Unit Controls: BACnet MS/TP controller with colored Display.

C. 2 Position OA/RA Damper – Class 1A leakage

D. 2" MERV 8 and 2" MERV13 filters

E. Digital compressor for turndown to 20%

F. Polymer Energy Recovery Wheel with Bypass dampers

G. Air Flow Monitoring: Outdoor Air Monitoring w/ Display

H. Air Flow Monitoring: Supply fan Piezo Ring

I. Air Flow Monitoring: Exhaust fan Piezo Ring

J. Non-Fused Disconnect Switch w/ 115v Outlet

K. Condenser Hailguard

L. Stainless Steel Drip Pan

M. Electronically Commuted Motors for supply and exhaust

N. Discharge air sensor

O. Dirty Filter Sensor

P. Fan failure sensor

Q. Several Space Zone temperature sensors (as shown on the plans)

R. Several Space Zone humidity sensors (as shown on the plans).

S. Zone temperature sensor averaging for space comfort control.

T. Zone humidity sensor peak zone control for space comfort control.
U. Additional accessories noted on the equipment schedules

3. EXECUTION

3.1 INSTALLATION

A. Install units level and plumb, maintaining manufacturer's recommended clearances.

B. Curb Support: Install unit on existing structural steel, level and secure. Secure units to the existing steel as recommended by the manufacturer.

C. Mechanical Contractor to install all accessories, including any pneumatic tubing required for building pressure control

D. Unit Support: Unit base shall be suitable for installing on structural support steel. Anchor shall be anchored to equipment pad with expansion anchors. Unit base shall be high enough to allow adequate clearance for condensate drain trap assembly.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 15 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Duct installation requirements are specified in other Division 15 Sections. Drawings indicate the general arrangement of ducts. The following are specific connection requirements:

1. Install ducts to termination at unit.

C. Electrical System Connections: Comply with applicable requirements in Division 16 Sections for power wiring, switches, and motor controls.

D. Ground equipment according to Division 16 Section "Grounding and Bonding."

E. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.3 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.
B. Perform the following field quality-control tests and inspections and prepare test reports:

1. After installing packaged air conditioners and after electrical circuitry has been energized, test units for compliance with requirements.
2. Inspect for and remove shipping bolts, blocks, and tie-down straps.
3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Remove malfunctioning units, replace with new units, and retest as specified above.

3.4 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

B. Engage a factory-authorized service representative to install and verify special control sequences.

 1. Zone temperature sensor averaging for space comfort control.
 2. Zone humidity sensor peak zone control for space comfort control.

C. Complete installation and startup checks according to manufacturer's written instructions and do the following:

1. Inspect for visible damage to unit casing.
2. Inspect for visible damage to compressor, air-cooled outside coil, and fans.
3. Inspect internal insulation.
4. Verify that labels are clearly visible.
5. Verify that clearances have been provided for servicing.
6. Verify that controls are connected and operable.
7. Verify that filters are installed.
8. Clean outside coil and inspect for construction debris.
10. Inspect operation of barometric dampers.

11. Lubricate bearings on fan.

12. Inspect fan-wheel rotation for movement in correct direction without vibration and binding.

13. Adjust fan belts to proper alignment and tension.

14. Start unit according to manufacturer's written instructions.
 a. Start refrigeration system in summer only.
 b. Complete startup sheets and attach copy with Contractor's startup report.

15. Inspect and record performance of interlocks and protective devices; verify sequences.

16. Operate unit for an initial period as recommended or required by manufacturer.

17. Adjust and inspect high-temperature limits.

18. Inspect outside-air dampers for proper stroke and interlock with return-air dampers.
 a. Start refrigeration system and measure and record the following:
 b. Coil leaving-air, dry- and wet-bulb temperatures.
 c. Coil entering-air, dry- and wet-bulb temperatures.
 d. Outside-air, dry-bulb temperature.

19. Outside-air-coil, discharge-air, dry-bulb temperature.

20. Inspect controls for correct sequencing of heating, mixing dampers, refrigeration, and normal and emergency shutdown.

21. Verify the following:
 a. Compressor refrigerant suction and hot-gas pressures.
 b. Short circuiting of air through outside coil or from outside coil to outside-air intake.

22. After startup and performance testing, change filters, vacuum heat exchanger and cooling and outside coils, lubricate bearings, adjust belt tension, and inspect operation of power vents.
3.5 ADJUSTING

A. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

B. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to site outside normal occupancy hours for this purpose, without additional cost.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner’s maintenance personnel to adjust, operate, and maintain packaged air conditioners. Provide a minimum of twenty (24) hours of onsite training to the owner.
SECTION 260300 - ELECTRICAL DEMOLITION & RENOVATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 REFERENCE CODES AND STANDARDS
 A. The work shall conform to:
 1. National Electrical Code
 2. State and Local Codes

PART 2 - PRODUCTS

2.1 Materials used for this work shall be in accordance with the applicable specification sections in Division 26.

PART 3 - EXECUTION

3.1 Provide demolition, relocation, and alteration of electrical construction as required.
 A. The contractor shall notify the owner 48 hours in advance of any interruptions of electric service to any area of the building.
 B. All interruptions of electric service shall be kept to a minimum. Where power is to be interrupted longer than two (2) hours, the work shall be done after normal business hours, and where necessary, temporary power shall be provided by means of additional temporary feeds or by means of a generator.
 C. Should the electrical service be disrupted due to construction while the building is occupied the contractor shall provide temporary electrical power at no additional cost to the contract.

3.2 Check the locations of all existing electrical work, such as lighting fixtures, electrical conduit, wiring, fittings, controls, starters and other electrical construction and provide the removing, relocating, rerouting, and reconnecting of this work due to demolition and new construction. Any existing apparatus or wiring device to be retained shall be disconnected, relocated and reinstalled as required, to allow for new wall, floor or ceiling finishes.
3.3 Methods of installation and standards of workmanship shall be in accordance with the applicable specification sections under Division 26.

3.4 Where existing equipment will remain in service during construction, provide rerouting and reconnection of electrical service as required.

3.5 Protect existing electrical equipment and installations indicated to remain. If damaged or disturbed in the course of the work, remove damaged portions and install new products of equal capacity, quality, and functionality.

3.6 Accessible Work: Remove exposed electrical equipment and installations, indicated to be demolished, in their entirety.

3.7 Abandoned Work: Cut and remove buried raceway and wiring, indicated to be abandoned in place, 2 inches (50 mm), below the surface of adjacent construction. Cap raceways and patch surface to match existing finish.

3.8 Remove demolished material from project site. Any particular equipment that the owner wants saved shall be stored as directed.

3.9 Remove, store, clean, reinstall, reconnect, and make operational components indicated for relocation.

3.10 Feeders or circuits, whether spliced, extended, relocated or new, shall maintain amperage and continuity of that respective feeder or circuit.

3.11 Where new work interferes with existing work or other trades, relocate such existing work without additional cost. Approval by the Owner's Representative must be given before any relocation work can begin. The relocation work shall be done in a manner acceptable to the Owner. Engage Contractor of the appropriate trade to do the work.

END OF SECTION 260300
PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:

1. Raceways.
2. Building wire and connectors.
4. Electrical identification.
5. Utility company electricity-metering components.
6. Concrete equipment bases.
7. Electrical demolition.
8. Cutting and patching for electrical construction.

1.2 SUBMITTALS

A. Product Data: For utility company electricity-metering components.

B. Shop Drawings: Dimensioned plans and sections or elevation layouts and single-line diagram of electricity-metering component assemblies specific to this Project.

1.3 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. The contractor shall be fully responsible in the coordination and installation of all electrical products as per the manufacturer’s recommendations. Should the contractor alter or change the manufacturer’s installation recommendations, the contractor shall submit a certified installation report from the manufactures representative stating the installed is acceptable. Any discrepancies in the installation shall be corrected per the manufacturer’s requirements at no additional cost to the owner and before final closeout of the project.

C. Devices for Utility Company Electricity Metering: Comply and coordinate with local utility company requirements and Specification Section 262713 – Electricity Metering.

D. Comply with NFPA 70.

1.4 COORDINATION
A. Coordinate chases, slots, inserts, sleeves, and openings for electrical supports, raceways, and cable with general construction work and all trades.

B. Sequence, coordinate, and integrate installing electrical materials and equipment for efficient flow of the Work. Coordinate installing large equipment that requires positioning before closing in the building or space.

C. Coordinate all electrical service connections to components furnished by utility companies.

 1. Coordinate installation and connection of exterior underground and overhead utilities and services, including provision for service entrances and electricity-metering components.

D. Coordinate location of access panels and doors for electrical items that are concealed by finished surfaces. Access doors and panels are specified in Division 8 Section "Access Doors and Frames."

E. Where electrical identification devices are applied to field-finished surfaces, coordinate installation of identification devices with completion of finished surface.

1.5 ASSET DATA COLLECTION FORM

A. Contractor to submit asset data collection forms for all equipment once submittals are approved and before construction can begin. The form shall be a standardized form so that the data can be loaded into the Maximo system.

The Following is a list of equipment that the contractor should supply data for.

Electronic Systems
- Elevator
- Main High Voltage Transformers
- Transfer switches
- Emergency Light packs
- Switch Gear
- Electrical Panels
- Electrical Meters

Building Systems
- Intrusion Alarm systems
- Access Control System
- Fire Alarm System
- Automatic Doors
B. **Data fields/information**

<table>
<thead>
<tr>
<th>Sample Form</th>
<th>Warranty Date of Expiration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>Belt Size & Quantity</td>
</tr>
<tr>
<td>Serial Number</td>
<td>Filter Size & Quantity</td>
</tr>
<tr>
<td>Area Served</td>
<td>Amperage</td>
</tr>
<tr>
<td>Installation Date (If known)</td>
<td>Voltage</td>
</tr>
<tr>
<td>Replacement Cost (Materials and Labor Estimate)</td>
<td>Actuator Type and Quantity</td>
</tr>
<tr>
<td>Useful / Nominal Life</td>
<td>Additional Operating Capacities (where applicable i.e HP, GPM, RPM, BTU etc.)</td>
</tr>
<tr>
<td>Location of Unit proper</td>
<td>Sub Systems (eg for AHUs =Supply fan, Return Fan, Coils, etc)</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Circuit power origination (Eg Panel and breaker the unit is fed from)</td>
</tr>
</tbody>
</table>

C. **During Construction and Prior to Commissioning and MSU taking control of the Building**

1. As Equipment is installed the physical location of all equipment identified shall be submitted and annotated on CAD drawings.
2. Drawings or PDF files will be identified in such a way that for Plumbing equipment, only the floor plan with the plumbing layer being shown, and all other layers hidden. The same will be true for the mechanical, electrical etc.
3. Manufactures PM routine shall be submitted for all listed equipment along with the itemized list of consumables and quantities that are required to perform the Preventative Maintenance.
4. A list of recommended spare parts for all listed equipment.
5. Warranty information on all listed equipment.
6. Location of physical devices occluded from sight such as units in drop ceilings should be also identified in the field with a small red or blue sticker on the actual ceiling grid.

1.6 **ITEMS NOT SHOWN OR SPECIFIED**

A. Any item of material not indicated on the drawings and/or not specified, but which is required for the complete and proper installation and/or operation of any part of the work, shall be provided as if indicated and specified, at no additional cost to the Owner.

B. Any work not indicated on the drawings and/or not specified, but which is required for compliance with applicable codes and regulations, shall be provided as if indicated and specified, at no additional cost to the Owner.

PART 2 - PRODUCTS

2.1 **RACEWAYS**

A. EMT: Electrical metallic tubing; ANSI C80.3, zinc-coated steel, with compression fittings.
B. FMC: Flexible metal conduit; zinc-coated steel.

C. IMC: Intermediate metal conduit; ANSI C80.6, zinc-coated steel, with threaded fittings.

D. LFMC: Liquidtight flexible metal conduit; zinc-coated steel with sunlight-resistant and mineral-oil-resistant plastic jacket.

E. RMC: Rigid metal conduit; galvanized rigid steel; ANSI C80.1.

F. RNC: Rigid nonmetallic conduit; NEMA TC 2, Schedule 40 PVC, with NEMA TC3 fittings.

G. Raceway Fittings: Specifically designed for raceway type with which used.

2.2 WIRES, CABLES, AND CONNECTIONS

A. Conductors, No. 10 AWG and Smaller: Solid or stranded copper.

B. Conductors, Larger Than No. 10 AWG: Stranded copper.

C. Insulation: Thermoplastic, rated 600 V, 75 deg C minimum, Type THW, THHN-THWN, or USE depending on application.

D. Wire Connectors and Splices: Units of size, ampacity rating, material, type, and class suitable for service indicated.

2.3 SUPPORTING DEVICES

A. Material: Cold-formed steel, with corrosion-resistant coating.

B. Metal Items for Use Outdoors or in Damp Locations: Hot-dip galvanized steel.

C. Slotted-Steel Channel: Flange edges turned toward web, and 9/16-inch- (14-mm-) diameter slotted holes at a maximum of 2 inches (50 mm) o.c., in webs. Strength rating to suit structural loading.

D. Nonmetallic Slotted Channel and Angle: Structural-grade, factory-formed, glass-fiber-resin channels and angles with 9/16-inch- (14-mm-) diameter holes at a maximum of 8 inches (203 mm) o.c., in at least one surface. Strength rating to suit structural loading.

E. Slotted Channel Fittings and Accessories: Recommended by the manufacturer for use with the type and size of channel with which used.

1. Materials: Same as channels and angles, except metal items may be stainless steel.

F. Raceway and Cable Supports: Manufactured clevis hangers, riser clamps, straps, threaded C-clamps with retainers, ceiling trapeze hangers, wall brackets, and spring-steel clamps or click-type hangers.
G. Pipe Sleeves: ASTM A 53, Type E, Grade A, Schedule 40, galvanized steel, plain ends.

H. Cable Supports for Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug for nonarmored electrical cables in riser conduits. Plugs have number and size of conductor gripping holes as required to suit individual risers. Body constructed of malleable-iron casting with hot-dip galvanized finish.

I. Expansion Anchors: Carbon-steel wedge or sleeve type.

J. Toggle Bolts: All-steel springhead type.

2.4 ELECTRICAL IDENTIFICATION

A. Identification Device Colors: Use those prescribed by ANSI A13.1, NFPA 70, and these Specifications.

B. Colored Adhesive Marking Tape for Raceways, Wires, and Cables: Self-adhesive vinyl tape, not less than .1 inch wide by 3 mils thick (25 mm wide by 0.08 mm thick).

C. Tape Markers for Conductors: Vinyl or vinyl-cloth, self-adhesive, wraparound type with preprinted numbers and letters.

D. Color-Coding Cable Ties: Type 6/6 nylon, self-locking type. Colors to suit coding scheme.

E. Underground Warning Tape: Permanent, bright-colored, continuous-printed, vinyl tape compounded for permanent direct-burial service, and with the following features:
 1. Not less than 6 inches wide by 4 mils thick (150 mm wide by 0.102 mm thick).
 2. Embedded continuous metallic strip or core.
 3. Printed legend that indicates type of underground line.

F. Engraved-Plastic Labels, Signs, and Instruction Plates: Engraving stock, melamine plastic laminate punched or drilled for mechanical fasteners 1/16-inch (1.6-mm) minimum thickness for signs up to 20 sq. in. (129 sq. cm) and 1/8-inch (3.2-mm) minimum thickness for larger sizes. Engraved legend in black letters on white background.

G. Warning and Caution Signs: Preprinted; comply with 29 CFR 1910.145, Chapter XVII. Colors, legend, and size appropriate to each application.
 1. Interior Units: Aluminum, baked-enamel-finish, punched or drilled for mechanical fasteners.
 2. Exterior Units: Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate with 0.0396-inch (1-mm), galvanized-steel backing. 1/4-inch (6-mm) grommets in corners for mounting.
H. Fasteners for Nameplates and Signs: Self-tapping, stainless-steel screws or No. 10/32 stainless-steel machine screws with nuts and flat and lock washers.

2.5 EQUIPMENT FOR UTILITY COMPANY’S ELECTRICITY METERING

A. Comply with requirements of the local electrical power utility company for meter sockets and current transformer cabinet and as per Specification Section 262713 – Electricity Metering.

B. Provide Cold Sequence Meter Protection Switch as required by the Local Utility Company.

2.6 CONCRETE BASES

A. Not applicable

PART 3 - EXECUTION

3.1 ELECTRICAL EQUIPMENT INSTALLATION

A. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom.

B. Materials and Components: Install level, plumb, and parallel and perpendicular to other building systems and components, unless otherwise indicated.

C. Equipment: Install to facilitate service, maintenance, and repair or replacement of components. Connect for ease of disconnecting, with minimum interference with other installations.

D. Right of Way: Give to raceways and piping systems installed at a required slope.

3.2 RACEWAY APPLICATION

A. Outdoor Installations:
 1. Exposed: RNC.
 2. Concealed: RNC.
 3. Underground, Single Run: RNC.
 4. Underground, Grouped: RNC.
 5. Connection to Vibrating Equipment: LFMC.
 6. Boxes and Enclosures: NEMA 250, Type 3R or Type 4, unless otherwise indicated.

B. Indoor Installations:
1. Exposed: EMT except in wet or damp locations, use IMC.
2. Concealed in Walls or Ceilings: FMC.
3. In Concrete Slab: RNC.
4. Below Slab on Grade or in Crawlspace: RNC
5. Connection to Vibrating Equipment: FMC; except in wet or damp locations: LFMC.
6. Boxes and Enclosures: NEMA 250, Type 1, unless otherwise indicated.

3.3 RACEWAY AND CABLE INSTALLATION

A. Conceal raceways and cables, unless otherwise indicated, within finished walls, ceilings, and floors.
B. Keep legs of raceway bends in the same plane and keep straight legs of offsets parallel.
C. Use RMC elbows where RNC turns out of slab.
D. Where required to provide a Rough-in Only device application concealed within the vertical walls the contractor shall provide the device work box and ¾” EMT raceway to above the ceiling with a 90 degree bend turned into the ceiling space and apply an open end plastic bushing or cap for future wiring application.
E. Install pull wires in empty raceways. Use No. 14 AWG zinc-coated steel or woven polypropylene or monofilament plastic line with not less than 29T 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wires.
F. Connect motors and equipment subject to vibration, noise transmission, or movement with a maximum of 72-inches (1830-mm) flexible conduit. Install LFMC in wet or damp locations. Install separate ground conductor across flexible connections.

3.4 WIRING METHODS FOR POWER, LIGHTING, AND CONTROL CIRCUITS

A. Application: Use wiring methods specified below to the extent permitted by applicable codes as interpreted by authorities having jurisdiction.
B. Exposed Feeders: Insulated single conductors in raceway.
C. Concealed Feeders in Concrete: Insulated single conductors in PVC raceway.
D. Exposed Branch Circuits Insulated single conductors in raceway.
E. Concealed Branch Circuits: Insulated single conductors in FMC raceway.
F. Underground Feeders and Branch Circuits: Insulated single conductors in raceway.
G. Remote-Control Signaling and Power-Limited Circuits, Classes 1, 2, and 3: Insulated conductors in FMC raceway unless otherwise indicated.
3.5 WIRING INSTALLATION

A. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.

3.6 ELECTRICAL SUPPORTING DEVICE APPLICATION

A. Damp Locations and Outdoors: Hot-dip galvanized materials or nonmetallic, slotted channel system components.

B. Dry Locations: Steel materials.

C. Strength of Supports: Adequate to carry present and future loads, times a safety factor of at least four with, 200-lb (90-kg) minimum design load for each support element.

3.7 SUPPORT INSTALLATION

A. Support parallel runs of horizontal raceways together on trapeze- or bracket-type hangers.

B. Size supports for multiple raceway or cable runs so capacity can be increased by a 25 percent minimum in the future.

C. Support individual horizontal single raceways with separate, malleable-iron pipe hangers or clamps.

D. Install sleeves for cable and raceway penetrations of concrete slabs and walls unless core-drilled holes are used. Install sleeves for cable and raceway penetrations of masonry and fire-rated gypsum walls and of all other fire-rated floor and wall assemblies. Install sleeves during erection of concrete and masonry walls.

E. Secure electrical items and their supports to building structure, using the following methods unless other fastening methods are indicated:

1. Wood: Wood screws or screw-type nails.
2. Gypsum Board: Toggle bolts. Seal around sleeves with joint compound, both sides of wall.
3. Masonry: Toggle bolts on hollow block and expansion bolts on solid block. Seal around sleeves with mortar, both sides of wall.
4. New Concrete: Concrete inserts with machine screws and bolts.
5. Existing Concrete: Expansion bolts or threaded studs driven by powder charge and provided with lock washers.
 a. Comply with AWS D1.1 for field welding.
7. Light Steel Framing: Sheet metal screws.
10. Fasteners: Select so load applied to each fastener does not exceed 25 percent of its proof-test load.

3.8 FIRESTOPPING

A. Apply firestopping to cable and raceway sleeves and other penetrations of fire-rated floor and wall assemblies to restore original undisturbed fire-resistance ratings of assemblies.

3.9 DEMOLITION

A. Protect existing electrical equipment and installations indicated to remain. If damaged or disturbed in the course of the Work, remove damaged portions and install new products of equal capacity, quality, and functionality.

B. Accessible Work: Remove exposed electrical equipment and installations, indicated to be demolished, in their entirety and back to electrical panel source.

C. Abandoned Work: Cut and remove buried raceway and wiring, indicated to be abandoned in place, 2 inches (50 mm) below the surface of adjacent construction. Cap raceways and patch surface to match existing finish.

D. Remove, store, clean, reinstall, reconnect, and make operational components indicated for relocation.

3.10 TEMPORARY ELECTRICAL POWER / SERVICES

A. Provide all necessary temporary electrical construction power by either a temporary service power pole or by portable generator to maintain adequate electrical power requirements for the duration of construction.

B. Should the project include demolition or disruption of an existing electrical service the contractor shall provide temporary back-up power source and connection that meets the demand requirements of the disturbed service at no additional cost to the project or owner.

3.11 CUTTING AND PATCHING

A. Cut, channel, chase, and drill floors, walls, partitions, ceilings, and other surfaces required to permit electrical installations. Perform cutting by skilled mechanics of trades involved.

B. Repair, refinish and touch up disturbed finish materials and other surfaces to match adjacent undisturbed surfaces.
END OF SECTION 16050
SECTION 260513 - MEDIUM-VOLTAGE CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes cables and related splices, terminations, and accessories for medium-voltage electrical distribution systems.

1.3 DEFINITIONS

1.4 SUBMITTALS
A. Product Data: For each type of cable indicated. Include splices and terminations for cables and cable accessories.
B. Qualification Data: For Installer.
C. Material Certificates: For each cable and accessory type, signed by manufacturers.
D. Source quality-control test reports.
E. Field quality-control test reports.

1.5 QUALITY ASSURANCE
A. Installer: Engage a cable splicer, trained and certified by splice material manufacturer, to install, splice, and terminate medium-voltage cable.
B. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.
1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.

C. Source Limitations: Obtain cables and accessories through one source from a single manufacturer.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

E. Comply with IEEE C2 and NFPA 70.

1.6 PROJECT CONDITIONS

A. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:

1. Notify Architect, Construction Manager and Owner no fewer than four (4) days in advance of proposed interruption of electric service.
2. Do not proceed with interruption of electric service without Owner’s written permission.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Cables:
 b. General Cable Technologies Corporation.
 c. Kerite Co. (The); Hubbell Incorporated.
 d. Okonite Company (The).
 e. Pirelli Cables & Systems NA.
 f. Rome Cable Corporation.
 g. Southwire Company.
 h. or approved equal.

2. Cable Splicing and Terminating Products and Accessories:
 a. Engineered Products Company.
 c. MPHusky.
d. Raychem Corp.; Telephone Energy and Industrial Division; Tyco International Ltd.

e. RTE Components; Cooper Power Systems, Inc.

f. Scott Fetzer Co. (The); Adalet.

g. Thomas & Betts Corporation.

h. Thomas & Betts Corporation/Elastimold.

i. 3M; Electrical Products Division

j. or approved equal.

2.2 CABLES

A. Cable Type: MV105.

C. Conductor: Copper.

D. Conductor Stranding: Compact round, concentric lay, Class B).

E. Strand Filling: Conductor interstices are filled with impermeable compound.

F. Conductor Insulation: Crosslinked polyethylene.

1. Voltage Rating: 15 kV.

2. Insulation Thickness: 133 percent insulation level.

G. Shielding: Solid copper wires, helically applied over semiconducting insulation shield.

H. Shielding and Jacket: Corrugated copper drain wires embedded in extruded, chlorinated, polyethylene jacket.

2.3 SPLICE KITS

A. Connectors and Splice Kits: Comply with IEEE 404; type as recommended by cable or splicing kit manufacturer for the application.

B. Splicing Products: As recommended, in writing, by splicing kit manufacturer for specific sizes, ratings, and configurations of cable conductors. Include all components required for complete splice, with detailed instructions.

1. Combination tape and cold-shrink-rubber sleeve kit with rejacketing by cast-epoxy-resin encasement or other waterproof, abrasion-resistant material.

4. Premolded EPDM splicing body kit with cable joint sealed by interference fit of mating parts and cable.
2.4 SOLID TERMINATIONS

A. Shielded-Cable Terminations: Comply with the following classes of IEEE 48. Insulation class is equivalent to that of cable. Include shield ground strap for shielded cable terminations.

1. Class 1 Terminations: Modular type, furnished as a kit, with stress-relief tube; multiple, molded-silicone rubber, insulator modules; shield ground strap; and compression-type connector.

2. Class 1 Terminations: Heat-shrink type with heat-shrink inner stress control and outer nontracking tubes; multiple, molded, nontracking skirt modules; and compression-type connector.

3. Class 1 Terminations: Modular type, furnished as a kit, with stress-relief shield terminator; multiple-wet-process, porcelain, insulator modules; shield ground strap; and compression-type connector.

4. Class 1 Terminations, Indoors: Kit with stress-relief tube, nontracking insulator tube, shield ground strap, compression-type connector, and end seal.

B. Nonshielded-Cable Terminations: Kit with compression-type connector. Include silicone-rubber tape, cold-shrink-rubber sleeve, or heat-shrink plastic-sleeve moisture seal for end of insulation whether or not supplied with kits.

2.5 SEPARABLE INSULATED CONNECTORS

A. Description: Modular system, complying with IEEE 386, with disconnecting, single-pole, cable terminators and with matching, stationary, plug-in, dead-front terminals designed for cable voltage and for sealing against moisture.

B. Terminations at Distribution Points: Modular type, consisting of terminators installed on cables and modular, dead-front, terminal junctions for interconnecting cables.

C. Load-Break Cable Terminators: Elbow-type units with 200-A load make/break and continuous-current rating; coordinated with insulation diameter, conductor size, and material of cable being terminated. Include test point on terminator body that is capacitance coupled.

D. Dead-Break Cable Terminators: Elbow-type unit with 600-A continuous-current rating; designed for de-energized disconnecting and connecting; coordinated with insulation diameter, conductor size, and material of cable being terminated. Include test point on terminator body that is capacitance coupled.

E. Dead-Front Terminal Junctions: Modular bracket-mounted groups of dead-front stationary terminals that mate and match with above cable terminators. Two-, three-, or four-terminal units as indicated, with fully rated, insulated, watertight conductor connection between terminals and complete with grounding lug, manufacturer's standard accessory stands, stainless-steel mounting brackets, and attaching hardware.

1. Protective Cap: Insulating, electrostatic-shielding, water-sealing cap with drain wire.
2. Portable Feed-Through Accessory: Two-terminal, dead-front junction arranged for removable mounting on accessory stand of stationary terminal junction.

3. Grounding Kit: Jumpered elbows, portable feed-through accessory units, protective caps, test rods suitable for concurrently grounding three phases of feeders, and carrying case.

F. Test-Point Fault Indicators: Applicable current-trip ratings and arranged for installation in test points of load-break separable connectors, and complete with self-resetting indicators capable of being installed with shotgun hot stick and tested with test tool.

G. Tool Set: Shotgun hot stick with energized terminal indicator, fault-indicator test tool, and carrying case.

2.6 ARC-PROOFING MATERIALS

A. Tape for First Course on Metal Objects: 10-mil- (250-micrometer-) thick, corrosion-protective, moisture-resistant, PVC pipe-wrapping tape.

B. Arc-Proofing Tape: Fireproof tape, flexible, conformable, intumescent to 0.3 inch. (8 mm) thick, compatible with cable jacket.

C. Glass-Cloth Tape: Pressure-sensitive adhesive type, 1/2 inch. (13 mm) wide.

2.7 FAULT INDICATORS

A. Indicators: Automatically reset fault indicator with inrush restraint feature, arranged to clamp to cable sheath and provide a display after a fault has occurred in cable. Instrument shall not be affected by heat, moisture, and corrosive conditions and shall be recommended by manufacturer for installation conditions.

2.8 SOURCE QUALITY CONTROL

A. Test and inspect cables according to [ICEA S-97-682] [ICEA S-94-649] before shipping.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install cables according to IEEE 576.

B. Pull Conductors: Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
1. Where necessary, use manufacturer-approved pulling compound or lubricant that will not deteriorate conductor or insulation.
2. Use pulling means, including fish tape, cable, rope, and basket-weave cable grips that will not damage cables and raceways. Do not use rope hitches for pulling attachment to cable.

C. Install exposed cables parallel and perpendicular to surfaces of exposed structural members and follow surface contours where possible.

D. Support cables according to Division 26 Section "Common Work Results for Electrical."

E. In manholes, handholes, pull boxes, junction boxes, and cable vaults, train cables around walls by the longest route from entry to exit and support cables at intervals adequate to prevent sag.

F. Install cable splices at pull points and elsewhere as indicated; use standard kits.

G. Install terminations at ends of conductors and seal multiconductor cable ends with standard kits.

H. Install separable insulated-connector components as follows:
 1. Protective Cap: At each terminal junction, with one on each terminal to which no feeder is indicated to be connected.

I. Arc Proofing: Unless otherwise indicated, arc proof medium-voltage cable at locations not protected by conduit, cable tray, direct burial, or termination materials. In addition to arc-proofing tape manufacturer's written instructions, apply arc proofing as follows:
 1. Clean cable sheath.
 2. Wrap metallic cable components with 10-mil. (250-micrometer) pipe-wrapping tape.
 3. Smooth surface contours with electrical insulation putty.
 4. Apply arc-proofing tape in one half-lapped layer with coated side toward cable.
 5. Band arc-proofing tape with 1-inch- (25-mm-), wide bands of half-lapped, adhesive, glass-cloth tape 2 inches. (50 mm) o.c.

J. Seal around cables passing through fire-rated elements according to Division 07 Section "Penetration Firestopping."

K. Install fault indicators on each phase where indicated.

L. Ground shields of shielded cable at terminations, splices, and separable insulated connectors. Ground metal bodies of terminators, splices, cable and separable insulated-connector fittings, and hardware.

M. Identify cables according to Division 26 Section "Identification for Electrical Systems."
3.2 FIELD QUALITY CONTROL

A. Testing: Engage a qualified testing and inspecting agency to perform the following field tests and inspections and prepare test reports:

B. Perform the following field tests and inspections and prepare test reports:

1. Perform each visual and mechanical inspection and electrical test stated in NETA ATS. Certify compliance with test parameters.
2. After installing medium-voltage cables and before electrical circuitry has been energized, test for compliance with requirements.

C. Remove and replace malfunctioning units and retest as specified above.

END OF SECTION 260513
SECTION 260519 - CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes building wires and cables and associated connectors, splices, and terminations for wiring systems rated 600 V and less.

1.3 SUBMITTALS

A. Field Test Reports: Indicate and interpret test results for compliance with performance requirements.

1.4 QUALITY ASSURANCE

A. Listing and Labeling: Provide wires and cables specified in this Section that are listed and labeled.

1. The Terms “Listed” and “Labeled” as defined in NFPA 70, Article 100.

B. Comply with NFPA 70.

1.5 DELIVERY, STORAGE AND HANDLING

A. Deliver wires and cables according to NEMA WC 26.

1.6 COORDINATION

A. Coordinate layout and installation of cables with other installations.

B. Revise locations and elevations from those indicated, as required to suit field conditions and as approved by Engineer.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the manufacturers specified.
2.2 CONDUCTORS AND CABLES

A. Manufacturers:
 2. General Cable Corporation.
 3. Rome Cable Company.

B. Refer to Part 3 "Conductor and Insulation Applications" Article for insulation type, cable construction, and ratings.

C. Conductor Material: Copper complying with NEMA WC 5 or 7; solid conductor for No. 10 AWG and smaller, stranded for No. 8 AWG and larger.

D. Conductor Insulation Types: Type THW, THHN-THWN, XHHW and SO complying with NEMA WC 5 or 7.

E. Multiconductor Cable: Armored cable Type AC, Metal-clad cable Type MC, and Type SO with ground wire. Armor shall be steel interlocked covering.

2.3 CONNECTORS AND SPLICES

A. Manufacturers:
 1. AFC Cable Systems, Inc.
 2. AMP Incorporated/Tyco International.
 3. Hubbell/Anderson.
 4. O-Z/Gedney; EGS Electrical Group LLC.
 5. 3M Company; Electrical Products Division.

B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

PART 3 - EXECUTION

3.1 CONDUCTOR AND INSULATION APPLICATIONS

A. Service Entrance: Type THHN-THWN, single conductors in raceway, XHHW, single conductors in raceway.

B. Exposed Feeders: Type THHN-THWN, single conductors in raceway.

C. Feeders Concealed in Ceilings, Walls, and Partitions: Type THHN-THWN, single conductors in raceway.

D. Feeders Concealed in Concrete, below Slabs-on-Grade, and in Crawlspaces: Type THHN-THWN, single conductors in raceway.

E. Exposed Branch Circuits, including in Crawlspaces: Type THHN-THWN, single conductors in raceway.
F. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN-THWN, single conductors in raceway, Armored cable Type AC, Metal-clad cable Type MC.

G. Branch Circuits Concealed in Concrete and below Slabs-on-Grade: Type THHN-THWN, single conductors in raceway.

H. Branch circuit homeruns exposed: Type THHN-THWN, single conductors in EMT or RMC.

I. Cord Drops and Portable Appliance Connections: Type SO, hard service cord.

J. Fire Alarm Circuits: Type THHN-THWN, in raceway or Power-limited, fire-protective, signaling circuit cable in steel armor spiral cover, colored red.

K. Class 1 Control Circuits: Type THHN-THWN, in raceway.

L. Class 2 Control Circuits: Power-limited cable, concealed in building finishes.

3.2 INSTALLATION

A. Conceal cables in finished walls, ceilings, and floors, unless otherwise indicated.

B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

C. Use pulling means; including fish tape, cable, rope, and basket-weave wire/cable grips, which will not damage cables or raceway.

D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

E. Support cables according to Division 16 Section "Basic Electrical Materials and Methods."

F. Provide an additional one thousand linear feet of cable/conductor and accessories of each type and size used on the project to accommodate any changes required to resolve interferences or directed by the Engineer.

G. Seal around cables penetrating fire-rated elements according to Division 7 Section "Through-Penetration Firestop Systems."

H. Identify and color-code conductors and cables according to Division 16 Section "Electrical Identification."

3.3 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.
B. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than un-spliced conductors.

1. Use oxide inhibitor in each splice and tap conductor for aluminum conductors.

C. Wiring at Outlets: Install conductor at each outlet, with at least 12 inches (300 mm) of slack.

3.4 FIELD QUALITY CONTROL

A. Testing: Perform the following field quality-control testing:

1. After installing conductors and cables and before electrical circuitry has been energized, test for compliance with requirements.
2. Perform each electrical test and visual and mechanical inspection stated in NETA ATS, Section 7.3.1. Certify compliance with test parameters.

B. Test Reports: Prepare a written report to record the following:

1. Test procedures used.
2. Test results that comply with requirements.
3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

END OF SECTION 16120
SECTION 260526 - GROUNDING AND BONDING

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes grounding of electrical systems and equipment. Requirements specified in this Section may be supplemented by requirements of other Sections.

1.2 SUBMITTALS

A. Product Data: For ground rods and chemical rods.

B. Field quality-control test reports.

1.3 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled under UL 467 as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. Comply with NFPA 70; for overhead-line construction and medium-voltage underground construction, comply with IEEE C2.

C. Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system.

1.4 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Ground Rods-Provide an additional 4 ground rods of each type and size utilized on this project.

2. Ground Conductors-Provide an additional 150 feet of each ground conductor type and size utilized on this project.

3. Ground Connections-Provide an additional 4 connections of each type and size utilized on this project.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Apache Grounding/Erico Inc.
2. Boggs, Inc.
3. Chance/Hubbell.
4. Copperweld Corp.
5. Dossert Corp.
7. Framatome Connectors/Burndy Electrical.
8. Ideal Industries, Inc.
9. ILSCO.
12. Lightning Master Corp.
13. Lyncole XIT Grounding.
15. Raco, Inc.; Division of Hubbell.
16. Robbins Lightning, Inc.
20. or approved equal.

2.2 GROUNDING CONDUCTORS

A. For insulated conductors, comply with Division 16 Section "Conductors and Cables."

B. Equipment Grounding Conductors: Insulated with green-colored insulation.

C. Isolated Ground Conductors: Insulated with green-colored insulation with yellow stripe. On feeders with isolated ground, use colored tape, alternating bands of green and yellow tape to provide a minimum of three bands of green and two bands of yellow.

D. Grounding Electrode Conductors: Stranded cable.

E. Underground Conductors: Bare, tinned, stranded, unless otherwise indicated.

F. Bare, Solid-Copper Conductors: ASTM B 3.

G. Assembly of Bare, Stranded-Copper Conductors: ASTM B 8.

H. Bare, Tinned-Copper Conductors: ASTM B 33.

I. Copper Bonding Conductor: No. 4 or No. 6 AWG, stranded copper conductor.

J. Copper Bonding Jumper: Bare copper tape, braided bare copper conductors, terminated with copper ferrules; 1-5/8 inches (42 mm) wide and 1/16 inch (1.5 mm) thick.
K. Tinned-Copper Bonding Jumper: Tinned-copper tape, braided copper conductors, terminated with copper ferrules; 1-5/8 inches (42 mm) wide and 1/16 inch (1.5 mm) thick.

L. Ground Conductor for Overhead Distribution: No. 4 AWG minimum, soft-drawn copper.

M. Grounding Bus: Bare, annealed copper bars of rectangular cross section, with insulated spacer.

N. Connectors: Comply with IEEE 837 and UL 467; listed for use for specific types, sizes, and combinations of conductors and connected items. Compression type or exothermic-welded type, in kit form, selected per manufacturer's written instructions.

2.3 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel.

B. Ground Rods: Sectional type; copper-clad steel.
 1. Size: 3/4 by 120 inches. (19 by 3000 mm) in diameter.

C. Chemical Electrodes: Copper tube, straight or L-shaped, filled with nonhazardous chemical salts, terminated with a 4/0 bare conductor. Provide backfill material recommended by manufacturer.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Use only copper conductors for both insulated and bare grounding conductors in direct contact with earth, concrete, masonry, crushed stone, and similar materials.

B. In raceways, use insulated equipment grounding conductors.

C. Exothermic-Welded Connections: Use for connections to structural steel and for underground connections.

D. Grounding Bus: Install in electrical and telephone equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 1. Use insulated spacer; space 1 inch. (25.4 mm) from wall and support from wall 6 inches. (150 mm) above finished floor, unless otherwise indicated.
 2. At doors, route the bus up to the top of the door frame, across the top of the doorway, and down to the indicated height above the floor.

E. Underground Grounding Conductors: Use tinned-copper conductor, No. 2/0 AWG minimum. Bury at least 24 inches. (600 mm) below grade or bury 12 inches. (300 mm) above duct bank when installed as part of the duct bank.
F. Equipment Grounding Conductors: Comply with NFPA 70, Article 250, for types, sizes, and quantities of equipment grounding conductors, unless specific types, larger sizes, or more conductors than required by NFPA 70 are indicated.

1. Install insulated equipment grounding conductors in feeders and branch circuits.

2. Busway Supply Circuits: Install insulated equipment grounding conductor from the grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway.

3. Computer Outlet Circuits: Install insulated equipment grounding conductor in branch-circuit runs from computer-area power panels or power-distribution units.

4. Isolated Grounding Receptacle Circuits: Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate grounding conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service, unless otherwise indicated.

5. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install an insulated equipment grounding conductor. Isolate equipment grounding conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service, unless otherwise indicated.

6. Nonmetallic Raceways: Install an equipment grounding conductor in nonmetallic raceways unless they are designated for telephone or data cables.

7. Air-Duct Equipment Circuits: Install an insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners and heaters. Bond conductor to each unit and to air duct.

8. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install an insulated equipment grounding conductor to each electric water heater, heat-tracing, and antifrost heating cable. Bond conductor to heater units, piping, connected equipment, and components.

9. Signal and Communication Systems: For telephone, alarm, voice and data, and other communication systems, provide No. 4 AWG minimum insulated grounding conductor in raceway from grounding electrode system to each service location, terminal cabinet, wiring closet, and central equipment location.

 b. Terminal Cabinets: Terminate grounding conductor on cabinet grounding terminal.

10. Metal Poles Supporting Outdoor Lighting Fixtures: Provide a grounding electrode in addition to installing an insulated equipment grounding conductor with supply branch-circuit conductors.

11. Common Ground Bonding with Lightning Protection System: Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit.
G. Metal Frame Grounding for Buildings: Drive a ground rod at the base of every corner column and at intermediate exterior columns at distances not more than 60 feet (18 m) apart. Connect rod to column with an underground grounding conductor. Interconnect ground rods with a continuous underground conductor, extending around the perimeter of the building, 24 inches (600 mm) minimum from building foundation. Use tinned-copper conductor not less than No. 2/0 AWG for underground conductor, and bury 18 inches (450 mm) below grade, minimum.

H. Building Ground Rings: Provide a perimeter ground ring for the entire building as required per the National Electrical Code Article 250.66C.

I. Bond all concrete encased electrode (foundation/footing reinforcing) Provide as required per National Electrical Code Article 250.66B.

J. Ground Rods: Install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes.
 1. Drive ground rods until tops are 2 inches (50 mm) below finished floor or final grade, unless otherwise indicated.
 2. Interconnect ground rods with grounding electrode conductors. Use exothermic welds, except as otherwise indicated. Make connections without exposing steel or damaging copper coating.

K. Grounding Conductors: Route along shortest and straightest paths possible, unless otherwise indicated. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

L. Bonding Straps and Jumpers: Install so vibration by equipment mounted on vibration isolation hangers or supports is not transmitted to rigidly mounted equipment. Use exothermic-welded connectors for outdoor locations, unless a disconnect-type connection is required; then, use a bolted clamp. Bond straps directly to the basic structure taking care not to penetrate any adjacent parts. Install straps only in locations accessible for maintenance.

M. Metal Water Service Pipe: Provide insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes by grounding clamp connectors. Where a dielectric main water fitting is installed, connect grounding conductor to street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.

N. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with grounding clamp connectors.

O. Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system.

P. Bond interior metal piping systems and metal air ducts to equipment grounding conductors of associated pumps, fans, blowers, electric heaters, and air cleaners. Use braided-type bonding straps.
Q. Bond each aboveground portion of gas piping system upstream from equipment shutoff valve.

R. Connections: Make connections so galvanic action or electrolysis possibility is minimized. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact will be galvanically compatible.

1. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer to order of galvanic series.
2. Make connections with clean, bare metal at points of contact.
5. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.
6. Exothermic-Welded Connections: Comply with manufacturer’s written instructions. Welds that are puffed up or that show convex surfaces indicating improper cleaning are not acceptable.
7. Equipment Grounding Conductor Terminations: For No. 8 AWG and larger, use pressure-type grounding lugs. No. 10 AWG and smaller grounding conductors may be terminated with winged pressure-type connectors.
8. Noncontact Metal Raceway Terminations: If metallic raceways terminate at metal housings without mechanical and electrical connection to housing, terminate each conduit with a grounding bushing. Connect grounding bushings with a bare grounding conductor to grounding bus or terminal in housing. Bond electrically noncontinuous conduits at entrances and exits with grounding bushings and bare grounding conductors, unless otherwise indicated.
9. Tighten screws and bolts for grounding and bonding connectors and terminals according to manufacturer’s published torque-tightening values. If manufacturer’s torque values are not indicated, use those specified in UL 486A and UL 486B.
10. Compression-Type Connections: Use hydraulic compression tools to provide correct circumferential pressure for compression connectors. Use tools and dies recommended by connector manufacturer. Provide embossing die code or other standard method to make a visible indication that a connector has been adequately compressed on grounding conductor.
11. Moisture Protection: If insulated grounding conductors are connected to ground rods or grounding buses, insulate entire area of connection and seal against moisture penetration of insulation and cable.

S. Overhead Line Grounding: Comply with IEEE C2 except where stricter requirements are indicated. Use 2 or more parallel ground rods if a single ground rod electrode resistance to ground exceeds 25 ohms.

1. Drive ground rods to a depth of 12 inches (300 mm) below finished grade in undisturbed earth.
2. Ground Rod Connections: Use clamp-type connectors listed for the purpose for underground connections and connections to rods.
3. Lightning Arresters: Separate arrester grounds from other grounding conductors.
4. Secondary Neutral and Tank of Transformer: Interconnect and connect to grounding conductor.

5. Protect grounding conductors on surface of wood poles with molding extended from grade level up to and through communication service and transformer spaces.

T. Duct Banks: Install a grounding conductor with at least 50 percent ampacity of the largest phase conductor in the duct bank.

U. Manholes and Handholes: Install a driven ground rod close to wall and set rod depth so 4 inches (100 mm) will extend above finished floor. If necessary, install ground rod before manhole is placed and provide a No. 1/0 AWG bare, tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive tape or heat-shrunk insulating sleeve from 2 inches (50 mm) above to 6 inches (150 mm) below concrete. Seal floor opening with waterproof, nonshrink grout.

V. Connections to Manhole Components: Connect exposed-metal parts, such as inserts, cable racks, pulling irons, ladders, and cable shields within each manhole or handhole, to ground rod or grounding conductor. Make connections with No. 4 AWG minimum, stranded, hard-drawn copper conductor. Train conductors level or plumb around corners and fasten to manhole walls. Connect to cable armor and cable shields as recommended by manufacturer of splicing and termination kits.

W. Pad-Mounted Transformers and Switches: Install two ground rods and counterpoise circling pad. Ground pad-mounted equipment and noncurrent-carrying metal items associated with substations by connecting them to underground cable and grounding electrodes. Use tinned-copper conductor not less than No. 2 AWG for counterpoise and for taps to equipment ground pad. Bury counterpoise not less than 18 inches (450 mm) below grade and 6 inches (150 mm) from the foundation.

3.2 FIELD QUALITY CONTROL

A. Testing: Perform the following field quality-control testing:

1. After installing grounding system but before permanent electrical circuitry has been energized, test for compliance with requirements.

2. Test completed grounding system at each location where a maximum ground-resistance level is indicated and at service disconnect enclosure grounding terminal. Measure ground resistance not less than two full days after the last trace of precipitation, and without the soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance. Perform tests, by the fall-of-potential method according to IEEE 81.

3. Provide drawings locating each ground rod, ground rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results. Nominal maximum values are as follows:
a. Equipment Rated 500 kVA and Less: 10 ohms.
b. Equipment Rated 500 to 1000 kVA: 5 ohms.
c. Equipment Rated More Than 1000 kVA: 3 ohms.
e. Substations and Pad-Mounted Switching Equipment: 5 ohms.
f. Manhole Grounds: 10 ohms.

END OF SECTION 16060
SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY
 A. Section includes:
 1. Hangers and supports for electrical equipment and systems.
 2. Construction requirements for concrete bases.

1.2 PERFORMANCE REQUIREMENTS
 A. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents.
 B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
 C. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of [five] <Insert number> times the applied force.

1.3 SUBMITTALS
 A. Product Data: For steel slotted support systems.
 B. Shop Drawings Show fabrication and installation details and include calculations for the following:
 1. Trapeze hangers. Include Product Data for components.
 2. Steel slotted channel systems. Include Product Data for components.
 3. Equipment supports.
 C. Welding certificates.

1.4 QUALITY ASSURANCE
 A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
 B. Comply with NFPA 70.
PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.; a division of Cooper Industries.
 c. ERICO International Corporation.
 d. GS Metals Corp.
 e. Thomas & Betts Corporation.
 f. Unistrut; Tyco International, Ltd.

2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
3. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
4. Channel Dimensions: Selected for applicable load criteria.

B. Raceway and Cable Supports: As described in NECA 1 and NECA 101.

C. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

D. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.

E. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

F. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Hilti Inc.
 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 3) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.
 4) or approved equal.
2. Mechanical-Expansion Anchors: Insert-wedge-type, stainless steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 2) Empire Tool and Manufacturing Co., Inc.
 3) Hilti Inc.
 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc
 5) or approved equal.

3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.

4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.

5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.

6. Toggle Bolts: All-steel springhead type.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Division 05 Section "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.

B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 3/8 inch in diameter.

C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 50 percent in future without exceeding specified design load limits.

1. Secure raceways and cables to these supports with two-bolt conduit clamps and/or single-bolt conduit clamps using spring friction action for retention in support channel.
3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.

B. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg).

C. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:

1. To Wood: Fasten with lag screws or through bolts.
2. To New Concrete: Bolt to concrete inserts.
3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. To Existing Concrete: Expansion anchor fasteners.
5. To Steel: Beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69.
6. To Light Steel: Sheet metal screws.
7. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that meet seismic-restraint strength and anchorage requirements.

D. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Division 05 Section "Metal Fabrications" for site-fabricated metal supports.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

C. Provide an additional 20 metal supports with required fasteners of each size and type used on the project to accommodate any changes required to resolve interferences or directed by the Engineer.

D. Field Welding: Comply with AWS D1.1/D1.1M.
3.4 CONCRETE BASES

A. Construct concrete bases of dimensions indicated but not less than 4 inches (100 mm) larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.

B. Use 4,000-psi, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Division 03 Section "Cast-in-Place Concrete".

C. Anchor equipment to concrete base.
 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm).

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 260529
SECTION 260533 – RACEWAYS & BOXES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring.

B. Related Sections include the following:

1. Division 16 Section "Underground Ducts" for exterior ductbanks, manholes, and underground utility construction.
2. Division 16 Section "Fire Rated Penetration Systems" for firestopping materials and installation at penetrations through walls, ceilings, and other fire-rated elements.
3. Division 16 Section "Basic Electrical Materials and Methods" for supports, anchors, and identification products.
4. Division 16 Section "Wiring Devices" for devices installed in boxes and for floor-box service fittings.

1.3 DEFINITIONS

A. EMT: Electrical metallic tubing.

B. ENT: Electrical nonmetallic tubing.

C. FMC: Flexible metal conduit.

D. IMC: Intermediate metal conduit.

E. LFMC: Liquidtight flexible metal conduit.

F. LFNC: Liquidtight flexible metal conduit.

G. RMC: Rigid Metal Conduit.

H. RNC: Rigid nonmetallic conduit.

1.4 SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings.

1.5 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. Comply with NFPA 70.

1.6 COORDINATION

A. Coordinate layout and installation of raceways, boxes, enclosures, cabinets, and suspension system with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:

1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 METAL CONDUIT AND TUBING

A. Manufacturer:

1. AFC Cable Systems, Inc.
2. Alflex Inc.
3. Anamet Electrical, Inc.; Anaconda Metal Hose.
4. Electri-Flex Co.
5. Grinnell Co./Tyco International; Allied Tube and Conduit Div.
6. LTV Steel Tubular Products Company.
7. Manhattan/CDT/Cole-Flex.
8. O-Z Gedney; Unit of General Signal.
9. Wheatland Tube Co.
10. or approved equal.

B. Rigid Steel Conduit: ANSI C80.1.

C. IMC: ANSI C80.6.

D. EMT and Fittings: ANSI C80.3.

1. Fittings: Compression type up to 1-1/2 in. conduit, 2 in. and larger use set screw type.

E. FMC: Zinc-coated steel.

F. LFMC: Flexible steel conduit with PVC jacket.
G. Fittings: NEMA FB 1; compatible with conduit and tubing materials.

2.3 METAL WIREWAYS

A. Manufacturer:
 1. Hoffman.
 2. Square D.

B. Material and Construction: Sheet metal sized and shaped as indicated, NEMA 1 or 3R.

C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, plastic edge covers, and other fittings to match and mate with wireways as required for complete system.

D. Select features, unless otherwise indicated, as required to complete wiring system and to comply with NFPA 70.

E. Wireway Covers: Screw cover type, Flanged and gasketed type at exterior.

F. Finish: Manufacturer's standard enamel finish.

2.4 SURFACE RACEWAYS

A. Surface Metal Raceways: Galvanized steel with snap-on covers. Finish with manufacturer’s standard grey finish coat.
 1. Manufacturer:
 b. Wiremold Company (The); Electrical Sales Division.

B. Types, sizes, and channels as indicated for each application, with fittings that match and mate with raceways.

C. Surface Non-Metallic Raceways: Polyvinyl with snap-on covers. Finish with manufacturer’s light ivory color.
 1. Manufacturer:
 a. Hubbell Inc.

D. Types, sizes, and channels as indicated and required for each application, with fittings that match and mate with raceways.
 1. Single channel polyvinyl (raceway for branch circuit power and/or low potential services shall be Premise Trak (Latching) as manufactured by Hubbell.
 2. The two-piece single channel shall consist of a base section, 5 feet length, latching snap on cover, 0.38 in 2 channel base. Provide 1-gang or 2-gang boxes as required. Apply channel with adhesive.
3. Two channel polyvinyl raceway for branch circuit power and low potential services shall be Wall Trak as manufactured by Hubbell.
4. The two-piece, two channel raceway shall consist of a base section, 5 feet length, latching snap on cover, 0.81 in² and 0.79 in² channel bases. Provide 1-gang or 2-gang boxes as required. Apply base with adhesive.

2.5 BOXES, ENCLOSURES, AND CABINETS

A. Manufacturer:
 1. Cooper Crouse-Hinds; Div. of Cooper Industries, Inc.
 2. Emerson/General Signal; Appleton Electric Company.
 3. Erickson Electrical Equipment Co.
 6. O-Z/Gedney; Unit of General Signal.
 7. RACO; Division of Hubbell, Inc.
 9. Scott Fetzer Com.; Adalet-PLM Division.
 10. Spring City Electrical Manufacturing Co.
 14. or approved equal.

B. Sheet Metal Outlet and Device Boxes: NEMA OS 1.

C. Cast-Metal Outlet and Device Boxes: NEMA FB 1, Type FD, with gasketed cover.

D. Floor Boxes: Cast metal, fully adjustable, rectangular.

E. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

F. Cast-Metal Pull and Junction Boxes: NEMA FB 1, cast aluminum with gasketed cover.

G. Hinged-Cover Enclosures: NEMA 250, Type 1, with continuous hinge cover and flush latch.
 1. Metal Enclosures: Steel, finished inside and out with manufacturer’s standard enamel.

H. Cabinets: NEMA 250, Type 1, galvanized steel box with removable interior panel and removable front, finished inside and out with manufacturer’s standard enamel. Hinged door in front cover with flush latch and concealed hinge. Key latch to match panelboards. Include metal barriers to separate wiring of different systems and voltage and include accessory feet where required for freestanding equipment.
2.6 FACTORY FINISHES

A. Finish: For raceway, enclosure, or cabinet components, provide manufacturer's standard gray paint applied to factory-assembled surface raceways, enclosures, and cabinets before shipping.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors:
 1. Exposed: Rigid steel or IMC.
 2. Concealed: Rigid steel or IMC.
 3. Underground, Single Run: RMC or RNC.
 4. Underground, Grouped: RMC or RNC.
 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.

B. Indoors:
 1. Exposed: EMT, surface metal raceway.
 2. Concealed: EMT.
 3. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC; except use LFMC in damp or wet locations.
 4. Damp or Wet Locations: Rigid steel conduit.
 5. Boxes and Enclosures: NEMA 250, Type 1, except as follows:
 a. Damp or Wet Locations: NEMA 250, Type 4.

C. Minimum Raceway Size: 3/4-inch trade size. (DN 21)

D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 1. Intermediate Steel Conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated.

3.2 INSTALLATION

A. Keep raceways at least 6 inches. (150 mm) away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

B. Complete raceway installation before starting conductor installation.

C. Support raceways as specified in Division 16 Section "Basic Electrical Materials and Methods."

D. Install temporary closures to prevent foreign matter from entering raceways.
E. Protect stub-ups from damage where conduits rise through floor slabs. Arrange so curved portions of bends are not visible above the finished slab.

F. Provide an additional one hundred feet of raceway and accessories of each type and size used on the project to accommodate any changes required to resolve interferences or as directed by the Engineer.

G. Make bends and offsets so ID is not reduced. Keep legs of bends in the same plane and keep straight legs of offsets parallel, unless otherwise indicated.

H. Conceal conduit and EMT within finished walls, ceilings, and floors, unless otherwise indicated.
 1. Install concealed raceways with a minimum of bends in the shortest practical distance, considering type of building construction and obstructions, unless otherwise indicated.

I. Raceways Embedded in Slabs: Install in middle 1/3 of slab thickness where practical and leave at least 2 inches (50 mm) of concrete cover.
 1. Secure raceways to reinforcing rods to prevent sagging or shifting during concrete placement.
 2. Space raceways laterally to prevent voids in concrete.
 3. Run conduit larger than 1-inch trade size (DN 27) parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support.
 4. Change from nonmetallic tubing to Schedule 40 nonmetallic conduit, rigid steel conduit, or IMC before rising above the floor.

J. Install exposed raceways parallel or at right angles to nearby surfaces or structural members and follow surface contours as much as possible.
 1. Run parallel or banked raceways together on common supports.
 2. Make parallel bends in parallel or banked runs. Use factory elbows only where elbows can be installed parallel; otherwise, provide field bends for parallel raceways.

K. Join raceways with fittings designed and approved for that purpose and make joints tight.
 1. Use insulating bushings to protect conductors.

L. Terminations:
 1. Where raceways are terminated with locknuts and bushings, align raceways to enter squarely and install locknuts with dished part against box. Use two locknuts, one inside and one outside box.
 2. Where raceways are terminated with threaded hubs, screw raceways or fittings tightly into hub so end bears against wire protection shoulder. Where chase
nipples are used, align raceways so coupling is square to box; tighten chase nipple so no threads are exposed.

M. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb. (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire.

N. Telephone and Signal System Raceways, 2-Inch Trade Size. (DN 53) and Smaller: In addition to above requirements, install raceways in maximum lengths of 150 feet (45 m) and with a maximum of two 90-degree bends or equivalent. Separate lengths with pull or junction boxes where necessary to comply with these requirements.

O. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with UL-listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points:

1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
2. Where otherwise required by NFPA 70.

P. Stub-up Connections: Extend conduits through concrete floor for connection to freestanding equipment. Install with an adjustable top or coupling threaded inside for plugs set flush with finished floor. Extend conductors to equipment with rigid steel conduit; FMC may be used 6 inches (150 mm) above the floor. Install screwdriver-operated, threaded plugs flush with floor for future equipment connections.

Q. Flexible Connections: Use maximum of 72 inches (1830 mm) of flexible conduit for recessed and semirecessed lighting fixtures; for equipment subject to vibration, noise transmission, or movement; and for all motors. Use LFMC in damp or wet locations. Install separate ground conductor across flexible connections.

R. Provide five additional boxes (floor, junction, etc.) and accessories of each size and type used on the project to accommodate any changes required to resolve interferences.

S. Surface Raceways: Install a separate, green, ground conductor in raceways from junction box supplying raceways to receptacle or fixture ground terminals.

T. Set floor boxes level and flush with finished floor surface.

U. Set floor boxes level. Trim after installation to fit flush with finished floor surface.

V. Install hinged-cover enclosures and cabinets plumb. Support at each corner.

3.3 PROTECTION

A. Provide final protection and maintain conditions that ensure coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.
1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
2. Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.

3.4 CLEANING

A. After completing installation of exposed, factory-finished raceways and boxes, inspect exposed finishes and repair damaged finishes.

END OF SECTION 16130
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes electrical identification materials and devices required to comply with ANSI C2, NFPA 70, OSHA standards, and authorities having jurisdiction.

1.3 SUBMITTALS

A. No submittals.

1.4 QUALITY ASSURANCE

A. Comply with ANSI C2.
B. Comply with NFPA 70.
C. Comply with ANSI A13.1 and NFPA 70 for color-coding.

PART 2 - PRODUCTS

2.1 RACEWAY AND CABLE LABELS

A. Comply with ANSI A13.1, Table 3, for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.

1. Color: Black letters on orange field.
2. Legend: Indicates voltage and service.

B. Adhesive Labels: Preprinted, flexible, self-adhesive vinyl with legend overlaminated with a clear, weather- and chemical-resistant coating.

C. Pretensioned, Wraparound Plastic Sleeves: Flexible, preprinted, color-coded, acrylic band sized to suit the diameter of the line it identifies and arranged to stay in place by pretensioned gripping action when placed in position.

D. Consider alternatives before specifying self-adhesive product in paragraph below. See Editing Instruction No. 1 in the Evaluations.

E. Colored Adhesive Tape: Self-adhesive vinyl tape not less than 3 mils thick by 1 to 2 inches wide (0.08 mm thick by 25 to 51 mm wide).
F. Underground-Line Warning Tape: Permanent, bright-colored, continuous-printed, vinyl tape.
 1. Not less than 6 inches wide by 4 mils thick. (152 mm wide by 0.102 mm thick).
 2. Compounded for permanent direct-burial service.
 3. Embedded continuous metallic strip or core.
 4. Printed legend indicating type of underground line.

G. Tape Markers: Vinyl or vinyl-cloth, self-adhesive, wraparound type with preprinted numbers and letters.

H. Aluminum, Wraparound Marker Bands: Bands cut from 0.014-inch- (0.4-mm-) thick aluminum sheet, with stamped or embossed legend, and fitted with slots or ears for permanently securing around wire or cable jacket or around groups of conductors.

2.2 NAMEPLATES AND SIGNS

B. Engraved Plastic Nameplates and Signs: Engraving stock, melamine plastic laminate, minimum 1/16 inch. (1.6 mm) thick for signs up to 20 sq. in. (129 sq. cm) and 1/8 inch. (3.2 mm) thick for larger sizes.
 1. Engraved legend with black letters on white face.
 2. Punched or drilled for mechanical fasteners.

C. Baked-Enamel Signs for Interior Use: Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for the application. 1/4-inch (6.4-mm) grommets in corners for mounting.

D. Exterior, Metal-Backed, Butyrate Signs: Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs with 0.0396-inch (1-mm) galvanized-steel backing; and with colors, legend, and size required for the application. 1/4-inch (6.4-mm) grommets in corners for mounting.

E. Fasteners for Nameplates and Signs: Self-tapping, stainless-steel screws or No. 10/32, stainless-steel machine screws with nuts and flat and lock washers.

2.3 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Cable Ties: Fungus-inert, self-extinguishing, one-piece, self-locking, Type 6/6 nylon cable ties.
 1. Minimum Width: 3/16 inch (5 mm).
 2. Tensile Strength: 50 lb (22.3 kg) minimum.
 3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).

B. Paint: Formulated for the type of surface and intended use.
1. Primer for Galvanized Metal: Single-component acrylic vehicle formulated for galvanized surfaces.
2. Primer for Concrete Masonry Units: Heavy-duty-resin block filler.
3. Primer for Concrete: Clear, alkali-resistant, binder-type sealer.
4. Enamel: Silicone-alkyd or alkyd urethane as recommended by primer manufacturer.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Identification Materials and Devices: Install at locations for most convenient viewing without interference with operation and maintenance of equipment.

B. Lettering, Colors, and Graphics: Coordinate names, abbreviations, colors, and other designations with corresponding designations in the Contract Documents or with those required by codes and standards. Use consistent designations throughout Project.

C. Sequence of Work: If identification is applied to surfaces that require finish, install identification after completing finish work.

D. Self-Adhesive Identification Products: Clean surfaces before applying.

E. Circuits with More Than 600 V: Identify raceway and cable with "DANGER--HIGH VOLTAGE" in black letters 2 inches (51 mm) high, stenciled with paint at 10-foot (3-m) intervals over a continuous, painted orange background. Identify the following:

1. Entire floor area directly above conduits running beneath and within 12 inches (305 mm) of a basement or ground floor that is in contact with earth or is framed above unexcavated space.
2. Wall surfaces directly external to conduits concealed within wall.
3. All accessible surfaces of concrete envelope around conduits in vertical shafts, exposed in the building, or concealed above suspended ceilings.
4. Entire surface of exposed conduits.

F. Install painted identification according to manufacturer's written instructions and as follows:

1. Clean surfaces of dust, loose material, and oily films before painting.
2. Prime surfaces using type of primer specified for surface.
3. Apply one intermediate and one finish coat of enamel.

G. Color Banding Raceways and Exposed Cables: Band exposed and accessible raceways of the systems listed below:

1. Bands: Pretensioned, wraparound plastic sleeves; colored adhesive tape; or a combination of both. Make each color band 2 inches (51 mm) wide, completely encircling conduit, and place adjacent bands of two-color markings in contact, side by side.
2. Band Locations: At changes in direction, at penetrations of walls and floors, at 50-foot (15-m) maximum intervals in straight runs, and at 25-foot (7.6-m) maximum intervals in congested areas.

3. Apply the following colors to the systems listed below:
 e. Mechanical and Electrical Supervisory System: Green and blue.
 f. Telecommunication System: Green and yellow.

H. Caution Labels for Indoor Boxes and Enclosures for Power and Lighting: Install pressure-sensitive, self-adhesive labels identifying system voltage with black letters on orange background. Install on exterior of door or cover.

I. Circuit Identification Labels on Boxes: Install labels externally.
 1. Exposed Boxes: Pressure-sensitive, self-adhesive plastic label on cover.
 3. Labeling Legend: Permanent, waterproof listing of panel and circuit number or equivalent.

J. Paths of Underground Electrical Lines: During trench backfilling, for exterior underground power, control, signal, and communication lines, install continuous underground plastic line marker located directly above line at 6 to 8 inches (150 to 200 mm) below finished grade. Where width of multiple lines installed in a common trench or concrete envelope does not exceed 16 inches (400 mm) overall, use a single line marker. Install line marker for underground wiring, both direct-buried cables and cables in raceway.

K. Color-Coding of Secondary Phase Conductors: Use the following colors for service feeder, and branch-circuit phase conductors:

 1. 208/120-V Conductors:
 a. Phase A: Black.
 b. Phase B: Red.
 c. Phase C: Blue.
 2. 480/277-V Conductors:
 b. Phase B: Orange.
 c. Phase C: Yellow
 3. Factory apply color the entire length of conductors, except the following field-applied, color-coding methods may be used instead of factory-coded wire for sizes larger than No. 10 AWG:
 a. Colored, pressure-sensitive plastic tape in half-lapped turns for a distance of 6 inches (150 mm) from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Use 1-inch- (25-mm-) wide tape in colors specified. Adjust tape bands to avoid obscuring cable identification markings.
 b. Colored cable ties applied in groups of three ties of specified color to each wire at each terminal or splice point starting 3 inches (76 mm) from the
terminal and spaced 3 inches (76 mm) apart. Apply with a special tool or pliers, tighten to a snug fit, and cut off excess length.

L. Power-Circuit Identification: Metal tags or aluminum, wraparound marker bands for cables, feeders, and power circuits in vaults, pull and junction boxes, manholes, and switchboard rooms.

1. Legend: 1/4-inch- (6.4-mm-) steel letter and number stamping or embossing with legend corresponding to indicated circuit designations.
2. Tag Fasteners: Nylon cable ties.

M. Apply identification to conductors as follows:

1. Conductors to Be Extended in the Future: Indicate source and circuit numbers.
2. Multiple Power or Lighting Circuits in the Same Enclosure: Identify each conductor with source, voltage, circuit number, and phase. Use color-coding to identify circuits' voltage and phase.
3. Multiple Control and Communication Circuits in the Same Enclosure: Identify each conductor by its system and circuit designation. Use a consistent system of tags, color-coding, or cable marking tape.

N. Apply warning, caution, and instruction signs as follows:

1. Warnings, Cautions, and Instructions: Install to ensure safe operation and maintenance of electrical systems and of items to which they connect. Install engraved plastic-laminated instruction signs with approved legend where instructions are needed for system or equipment operation. Install metal-backed butyrate signs for outdoor items.
2. Emergency Operation: Install engraved laminated signs with white legend on red background with minimum 3/8-inch- (9-mm-) high lettering for emergency instructions on power transfer, load shedding, and other emergency operations.

O. Equipment Identification Labels: Engraved plastic laminate. Install on each unit of equipment, including central or master unit of each system. This includes power, lighting, communication, signal, and alarm systems, unless units are specified with their own self-explanatory identification. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high lettering on 1-1/2-inch- (38-mm-) high label; where two lines of text are required, use labels 2 inches (50 mm) high. Use white lettering on black field. Apply labels for each unit of the following categories of equipment using mechanical fasteners:

1. Panelboards, electrical cabinets, and enclosures.
2. Access doors and panels for concealed electrical items.
3. Electrical switchgear and switchboards.
4. Emergency system boxes and enclosures.
5. Disconnect switches.
7. Motor starters.
10. Contactors.
12. Control devices.
13. Transformers.
15. Telephone switching equipment.
16. Clock/program master equipment.
17. Fire alarm master station or control panel.

END OF SECTION 16075
SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes receptacles, connectors, switches, and finish plates.

1.3 DEFINITIONS

A. GFCI or GFI: Ground-fault circuit interrupter.

B. SPD or TVSS: Transient voltage surge suppressor.

1.4 SUBMITTALS

A. Product Data: For each product specified.

B. Shop Drawings: Legends for receptacles and switch plates.

C. Samples: For devices and device plates for color selection and evaluation of technical features.

D. Maintenance Data: For materials and products to include in maintenance manuals specified in Division 1.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction.

B. Comply with NEMA WD 1.

C. Comply with NFPA 70.

1.6 COORDINATION
A. Receptacles for Owner-Furnished Equipment: Match plug configurations.

1. Cord and Plug Sets: Match equipment requirements.

1.7 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents. Deliver extra materials to Owner.

1. Floor Service-Outlet Assemblies: One for each 10, but not less than one.
2. GFCI Receptacles: One for each forty installed.
3. TVSS Receptacles: One for each forty installed.
4. T/R Receptacles: One for each forty installed.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Wiring Devices:
 b. Killark Electric Manufacturing Co.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand; Wiring Devices Div.

2. Wiring Devices for Hazardous (Classified) Locations:
 b. Killark Electric Manufacturing Co.
 c. Pyle-National, Inc.; an Amphenol Co.

3. Multioutlet Assemblies:
 a. Airey-Thompson Co.
 b. Wiremold.

2.2 RECEPTACLES

A. Straight-Blade and Locking Receptacles: Heavy-Duty grade.

B. GFCI Receptacles: Feed-through type, with integral NEMA WD 6, Configuration 5-20R duplex receptacle arranged to protect connected downstream receptacles on
same circuit. Design units for installation in a 2-3/4-inch- (70-mm-) deep outlet box without an adapter.

C. Isolated-Ground Receptacles: Equipment grounding contacts connected only to the green grounding screw terminal of the device with inherent electrical isolation from mounting strap.
 1. Devices: Listed and labeled as isolated-ground receptacles.
 2. Isolation Method: Integral to receptacle construction and not dependent on removable parts.

D. TVSS Receptacles: Duplex type, NEMA WD 6, Configuration 5-20R, with integral/interchangeable TVSS in line to ground, line to neutral, and neutral to ground.
 1. TVSS Components: Multiple metal-oxide varistors; rated a nominal clamp level of 500 transient-suppression voltage and minimum single transient pulse energy dissipation of 140 J line to neutral, and 70 J line to ground and neutral to ground.
 2. Active TVSS Indication: Light visible in face of device to indicate device as "active" or "no longer active."
 3. Identification: Distinctive marking on face of device denotes TVSS-type unit.

E. Tamper Resistant (T/R) Receptacles: Integral NEMA WD 6, Configuration 5-20R duplex receptacle. Design units for installation in a 2-3/4-inch-deep outlet box without an adapter.
 1. Devices: Listed and labeled as tamper resistant receptacles.
 2. Protection Method: Contains a sturdy mechanical shutter system to prevent objects from being inserted into the receptacle.
 3. Identification: Distinctive marking on face of device denotes T/R-type unit.

F. Industrial Heavy-Duty Receptacle: Comply with IEC 309-1.

G. Hazardous (Classified) Location Receptacles: Comply with NEMA FB 11.

2.3 PENDANT CORD/CONNECTOR DEVICES

A. Description: Matching, locking type, plug and receptacle body connector, NEMA WD 6, Configurations L5-20P and L5-20R, Heavy-Duty grade.
 2. External Cable Grip: Woven wire-mesh type made of high-strength galvanized-steel wire strand, matched to cable diameter, and with attachment provision designed for corresponding connector.

2.4 CORD AND PLUG SETS
A. Description: Match voltage and current ratings and number of conductors to requirements of equipment being connected.

1. Cord: Rubber-insulated, stranded-copper conductors, with type SOW-A jacket. Green-insulated grounding conductor, and equipment-rating ampacity plus a minimum of 30 percent.

2.5 FLOOR BOX ASSEMBLIES

A. Box size - 8" x 6" x 5" [203mm x 152mm x 127mm] (Wiremold AF1 & AF2 Series)
The panel opening shall be 8" x 6" [203mm x 152mm] and have an overall module depth of 5" [127mm]. The box must provide a total activation chamber volume of at least 130 cubic inches [2130 ml]. The total Box Volume capacity shall have a minimum of 208 cubic inches [3418 ml].

The box lid shall be constructed of polycarbonate material, available in standard colors of black, brown and gray. The lid shall provide a removable cable guard for egress of power and communication workstation cables. The cable guards shall hold workstation cables in place with the lid either in the open or closed position.

The trim flange shall be constructed of polycarbonate material and have a minimum overall dimension of 8 3/4" x 6 3/4" [222mm x 171mm]. The hinged lid and trim flange shall be available for either carpet or tile floor applications.

The wiring chamber shall provide a minimum of three separate compartments to accommodate a combination of both power and communication wiring. The compartments shall be separated by use of die cast aluminum built in dividers.

If a prewired flexible wiring system is specified, the same manufacturer shall supply the box, and the flexible wiring system. The box shall contain integral connectors to mate with the flexible wiring system. The box shall be capable of disconnecting from the flexible wiring system directly at the box. The prewired box shall be able to contain up to three separate circuits, utilizing up to an 8-conductor MC cable assembly.

The box shall be secured to the raised floor by the use of two locking tabs. The locking tabs shall be integral to the box and adjusted by use of their locking screws.

B. Box size - 8" x 10" x 5" [203mm x 254mm x 127mm] (Wiremold AF3 & AF4 Series)
The panel opening shall be 8" x 10" [203mm x 254mm] and have an overall module depth of 5" [127mm]. The box must provide a total Device Wiring Chamber volume of
at least 220 cubic inches [3604 ml]. The total Box Volume capacity shall have a minimum of 300 cubic inches [4915 ml].

The box lid shall be a hinged style and constructed of polycarbonate material, available in standard colors of black, brown and gray. The lid shall provide a minimum of three removable cable guards for egress of power and communication workstation cables. The cable guards shall hold workstation cables in place with the lid either in the open or closed position.

The trim flange shall be constructed of polycarbonate material and have a minimum overall dimension of 9 1/8" x 11" (232mm x 279mm). The hinged lid and trim flange shall be available for either carpet or tile floor applications.

The wiring chamber shall provide an upper and a lower compartment. The top compartment shall be divided into three separate compartments to accommodate a combination of both power and communication wiring. These compartments shall be separated by use of integral; die cast aluminum built in dividers. The bottom compartment shall be available for either all power or all communication wiring.

If a prewired flexible wiring system is specified, the same manufacturer shall supply the box, and the flexible wiring system. The box shall contain integral connectors to mate with the flexible wiring system. The box shall be capable of disconnecting from the flexible wiring system directly at the box. The prewired box shall be able to contain up to three separate circuits, utilizing up to an 8-conductor MC cable assembly.

The box shall be secured to the raised floor by the use of two locking tabs. The locking tabs shall be integral to the box and adjusted by use of their locking screws.

C. Communication Devices and Accessories

2.2.3 Box size - 8" x 10" x 2 1/2" [203mm x 254mm x 64mm] (SAF21/2 Series) The panel opening shall be 8" x 10" [203mm x 254mm] and have overall depth of 2 1/2" [64mm]. The box must provide a total Device Wiring Chamber volume of at least 18.5 cubic inches [303ml]. The total Box Volume capacity shall have a minimum of 29 cubic inches [475ml].

The box lid shall be a hinged style and constructed of polycarbonate material, available in standard colors of black, brown and gray. The lid shall provide a minimum of three (3) removable cable guards for egress of power and communication workstations cables. The cable guards shall hold workstation cables in place with the lid either in the open or closed position.

The trim flange shall be constructed of polycarbonate material and have a minimum overall dimension of 9 1/8" x 11" [232mm x 279mm]. The hinged lid and trim flange shall be available for either carpet or tile floor applications.
2.6 CORD REELS

A. A. Description: Match voltage and current ratings and number of conductors to requirements of equipment being connected.

1. Cord: Rubber-insulated, stranded-copper conductors, with type SOW-A jacket. Green-insulated grounding conductor, and equipment-rating ampacity plus a minimum of 30 percent.
2. Plug: GFCI type device, Nylon body. Match cord and receptacle type for connection
3. Reel: 15 Amp rated, 125V, with 45 linear feet of retractable cable (Hubbell model #HBL45123C). Provide mounting assembly as required for complete installation.

2.7 SWITCHES

A. Snap Switches: Heavy-duty, quiet type.

2.8 WALL PLATES

A. Single and combination types match corresponding wiring devices.

1. Plate-Securing Screws: Metal with head color to match plate finish.
2. Material for Finished Spaces: 0.04-inch- (1-mm-) thick, Type 302, satin-finished stainless steel.

2.9 MULTIOUTLET ASSEMBLIES

A. Components of Assemblies: Products from a single manufacturer designed for use as a complete, matching assembly of raceways and receptacles.

B. Raceway Material: Metal, with manufacturer's standard finish.

C. Raceway Material: Nonmetal (accepted in office areas only)

D. Wire: No. 12 AWG minimum.

2.10 MISCELLANEOUS WIRING CONNECTIONS AND COMPONENTS

A. Components of Assemblies: Products from a single manufacturer designed for use as a complete, matching assembly of raceways and receptacles.

B. Raceway Material: Metal, with manufacturer's standard finish.
C. Raceway Material: Nonmetal.(accepted in office areas only)

D. Wire: not less than the manufacturers recommendation unless noted otherwise.

E. Security Devices: Provide all wiring devices and connections as specified by the manufacturer and the contract documents. Unless otherwise noted.

F. IT Devices: Provide all wiring devices and connections as specified by the manufacturer and the contract documents. Unless otherwise noted.

G. Audio Visual Devices: Provide all wiring devices and connections as specified by the manufacturer and the contract documents Unless otherwise noted.

2.11 FINISHES

A. Color: Manufacturers standard, as selected by Architect.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install devices and assemblies plumb and secure.

B. Install wall plates when painting is complete.

C. Install wall dimmers to achieve indicated rating after derating for ganging as instructed by manufacturer.

D. All receptacles used for garage installations shall be GFCI type wiring devices.

E. Do not share neutral conductor on load side of dimmers.

1. Provide installation and materials for an additional thirty wiring devices with cover plates of each type used with 100 feet of circuit wiring to accommodate changes as directed by the Engineer.

F. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical, and grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.

G. Protect devices and assemblies during painting.
H. Adjust locations at which floor service outlets and telephone/power service poles are installed to suit arrangement of partitions and furnishings.

3.2 IDENTIFICATION

A. Comply with Division 26 Section "Electrical Identification."
B. Comply with Division 26 Section "Basic Electrical Materials and Methods."
 1. Switches: Where three or more switches are ganged, and elsewhere as indicated, identify each switch with approved legend engraved on wall plate.
 2. Receptacles: Identify panelboard and circuit number from which served. Use machine-printed, pressure-sensitive, abrasion-resistant label tape on face of plate and durable wire markers or tags within outlet boxes.

3.3 CONNECTIONS

A. Connect wiring device grounding terminal to outlet box with bonding jumper.
B. Connect wiring device grounding terminal to branch-circuit equipment grounding conductor.
C. Isolated-Ground Receptacles: Connect to isolated-ground conductor routed to designated isolated equipment ground terminal of electrical system.
D. Tighten electrical connectors and terminals according to manufacturers published torque-tightening values. If manufacturers torque values are not indicated, use those specified in UL 486A and UL 486B.

3.4 FIELD QUALITY CONTROL

A. Test wiring devices for proper polarity and ground continuity. Operate each device at least six times.
B. Check TVSS receptacle indicating lights for normal indication.
C. Test GFCI operation with both local and remote fault simulations according to manufacturer's written instructions.
D. Replace damaged or defective components.

3.5 CLEANING

A. Internally clean devices, device outlet boxes, and enclosures. Replace stained or improperly painted wall plates or devices.
END OF SECTION 262726
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes cartridge fuses, rated 600 V and less, for use in switches, panelboards, switchboards, controllers, and motor-control centers; and spare fuse cabinets.

1.3 SUBMITTALS

A. Product Data: Include dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings for each fuse type indicated.

B. Product Data: Include the following for each fuse type indicated:
 1. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.
 2. Let-through current curves for fuses with current-limiting characteristics.
 3. Time-current curves, coordination charts and tables, and related data.
 4. Fuse size for elevator feeders and elevator disconnect switches.

C. Ambient Temperature Adjustment Information. If ratings of fuses have been adjusted to accommodate ambient temperatures, provide list of fuses adjusted.
 1. For each adjusted fuse, include location of fuse, original fuse rating, local ambient temperature, and adjusted fuse rating.
 2. Provide manufacturer's technical data on which ambient temperature adjustment calculations are based.

D. Maintenance Data: For tripping devices to include in maintenance manuals specified in Division 1.

1.4 QUALITY ASSURANCE

A. Source Limitations: Provide fuses from a single manufacturer.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. The contractor shall coordinate with all trades and equipment suppliers and provide the required fused protection for the equipment being installed.

D. All equipment requiring fused switches shall be provided with the properly size and type fuses and enclosures per the manufacturer’s recommendation and the environment of the equipment to be protected.

E. Comply with NEMA FU 1.

F. Comply with NFPA 70.

1.5 PROJECT CONDITIONS

A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F (4.4 deg C) or more than 100 deg F (38 deg C), apply manufacturer’s ambient temperature adjustment factors to fuse ratings.

1.6 COORDINATION

A. Coordinate fuse ratings with HVAC and refrigeration equipment nameplate limitations of maximum fuse size.

1.7 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged in original cartons or containers and identified with labels describing contents.

1. Fuses: Quantity equal to 10 percent of each fuse type and size, but not fewer than 6 of each type and size.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Eagle Electric Mfg. Co., Inc.
3. Ferraz Corp.
5. Gould Shawmut.
7. or approved equal.

2.2 CARTRIDGE FUSES

A. Characteristics: NEMA FU 1, nonrenewable cartridge fuse; class and current rating indicated; voltage rating consistent with circuit voltage.

2.3 SPARE FUSE CABINET

A. Cabinet: Wall-mounted, 0.05-inch- (1.27-mm-) thick steel unit with full-length, recessed piano-hinged door and key-coded cam lock and pull.
 1. Size: Adequate for storage of spare fuses specified with 15 percent spare capacity minimum.
 2. Finish: Gray, baked enamel.
 3. Identification: "SPARE FUSES" in 1-1/2-inch- (40-mm-) high letters on exterior of door.
 4. Fuse Pullers: For each size fuse.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.
B. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS

A. Main Service: Class L, time delay.
B. Main Feeders: Class L, time delay.
C. Motor Branch Circuits: Class RK1, time delay.
D. Other Branch Circuits: Class RK1, time delay.

3.3 INSTALLATION

A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.
B. Install spare fuse cabinet[s].

3.4 IDENTIFICATION

A. Install labels indicating fuse replacement information on inside door of each fused switch.

END OF SECTION 16491
SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes individually mounted enclosed switches and circuit breakers used for the following:
 1. Service disconnecting means.
 2. Feeder and branch-circuit protection.

B. Related Sections include the following:
 1. Division 16 Section "Wiring Devices" for attachment plugs, receptacles, and toggle switches used for disconnecting means.
 2. Division 16 Section "Switchboards" for individually enclosed, fusible switches used as feeder protection.
 3. Division 16 Section "Fuses" for fusible devices.

1.3 DEFINITIONS

A. GFCI: Ground-fault circuit interrupter.

B. RMS: Root mean square.

C. SPDT: Single pole, double throw.

1.4 SUBMITTALS

A. Product Data: For each type of switch, circuit breaker, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.

B. Shop Drawings: For each switch and circuit breaker.

 1. Dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings. Include the following:
a. Enclosure types and details for types other than NEMA 250, Type 1.
b. Current and voltage ratings.
c. Short-circuit current rating.
d. UL listing for series rating of installed devices.
e. Features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.

C. Qualification Data: Submit data for testing agencies indicating that they comply with qualifications specified in "Quality Assurance" Article.

D. Field Test Reports: Submit written test reports and include the following:
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

E. Manufacturer's field service report.

F. Maintenance Data: For enclosed switches and circuit breakers and for components to include in maintenance manuals specified in Division 1. In addition to requirements specified in Division 1 Section "Closeout Procedures," include the following:
 1. Routine maintenance requirements for components.
 2. Manufacturer's written instructions for testing and adjusting switches and circuit breakers.
 3. Time-current curves, including selectable ranges for each type of circuit breaker.

1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: Testing agency that is a member company of the InterNational Electrical Testing Association and that is acceptable to authorities having jurisdiction.

 1. Testing Agency's Field Supervisor: Person currently certified by the InterNational Electrical Testing Association or National Institute for Certification in Engineering Technologies to supervise on-site testing specified in Part 3.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with NEMA AB 1 and NEMA KS 1.

D. Comply with NFPA 70.
E. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

1.6 PROJECT CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation under the following conditions, unless otherwise indicated:

1. Ambient Temperature: Not less than \(-22\) deg F (\(-30\) deg C) and not exceeding \(104\) deg F (\(40\) deg C).

1.7 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with other construction, including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

1.8 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Spares: For the following:
 a. Potential Transformer Fuses-Provide an additional 6 fuses of each type utilized on this project.
 b. Control-Power Fuses-Provide an additional 6 fuses of each type utilized on this project.
 c. Fuses and Fusible Devices for Fused Circuit Breakers-Provide an additional 6 fuses of each type utilized on this project.
 d. Fuses for Fused Switches-Provide an additional 10 fuses of each type utilized on this project.
 e. Fuses for Fused Power-Circuit Devices-Provide an additional 10 fuses of each type utilized on this project.

2. Spare Indicating Lights-Provide an additional 6 lights of each type utilized on this project.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Fusible Switches:
 b. General Electric Co.; Electrical Distribution & Control Division.
 c. Siemens Energy & Automation, Inc.
 d. Square D Co.

2. Molded-Case Circuit Breakers:
 b. General Electric Co.; Electrical Distribution & Control Division.
 c. Klockner-Moeller.
 d. Siemens Energy & Automation, Inc.
 e. Square D Co.

3. Combination Circuit Breaker and Ground-Fault Trip:
 b. General Electric Co.; Electrical Distribution & Control Division.
 c. Siemens Energy & Automation, Inc.
 d. Square D Co.

4. Molded-Case, Current-Limiting Circuit Breakers:
 b. General Electric Co.; Electrical Distribution & Control Division.
 c. Siemens Energy & Automation, Inc.
 d. Square D Co.

5. Integrally Fused, Molded-Case Circuit Breakers:
 b. General Electric Co.; Electrical Distribution & Control Division.
 c. Siemens Energy & Automation, Inc.
 d. Square D Co.

2.2 ENCLOSED SWITCHES

A. Enclosed, Nonfusible Switch: NEMA KS 1, Type HD, with lockable handle.

B. Enclosed, Fusible Switch, 800 A and Smaller: NEMA KS 1, Type HD, with clips to accommodate specified fuses, lockable handle with two padlocks, and interlocked with cover in closed position.

2.3 ENCLOSED CIRCUIT BREAKERS
A. Molded-Case Circuit Breaker: NEMA AB 1, with interrupting capacity to meet available fault currents.

3. Electronic Trip Unit Circuit Breakers: RMS sensing; field-replaceable rating plug; with the following field-adjustable settings:
 a. Instantaneous trip.
 b. Long- and short-time pickup levels.
 c. Long- and short-time time adjustments.
 d. Ground-fault pickup level, time delay, and \(I^2t \) response.

4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.

5. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker; trip activation on fuse opening or on opening of fuse compartment door.

7. Molded-Case Switch: Molded-case circuit breaker without trip units.

B. Molded-Case Circuit-Breaker Features and Accessories: Standard frame sizes, trip ratings, and number of poles.

1. Lugs: Mechanical style suitable for number, size, trip ratings, and material of conductors.

2. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HACR for heating, air-conditioning, and refrigerating equipment.

4. Communication Capability: Circuit-breaker-mounted communication module with functions and features compatible with power monitoring and control system.

5. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 75 percent of rated voltage.

6. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage with field-adjustable 0.1- to 0.6-second time delay.

7. Auxiliary Switch: One SPDT switch with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.

8. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.

2.4 ENCLOSURES
A. NEMA AB 1 and NEMA KS 1 to meet environmental conditions of installed location.

1. Outdoor Locations: NEMA 250, Type 3R.
3. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
4. Hazardous Areas Indicated on Drawings: NEMA 250, Type 7C.

2.5 FACTORY FINISHES

A. Manufacturer's standard prime-coat finish ready for field painting.

B. Finish: Manufacturer's standard paint applied to factory-assembled and -tested enclosures before shipping.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance.

1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with mounting and anchoring requirements specified in Division 16 Section "Seismic Controls for Electrical Work."

B. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

C. Provide an additional ten branch breakers with enclosures and accessories of each size, phase and voltage as required to accommodate changes to resolve interferences or as directed by the Engineer.

3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs as specified in Division 16 Section "Basic Electrical Materials and Methods"

B. Enclosure Nameplates: Label each enclosure with engraved metal or laminated-plastic nameplate mounted with corrosion-resistant screws.

3.4 CONNECTIONS
A. Install equipment grounding connections for switches and circuit breakers with ground continuity to main electrical ground bus.

B. Install power wiring. Install wiring between switches and circuit breakers, and control and indication devices.

C. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.5 FIELD QUALITY CONTROL

A. Prepare for acceptance tests as follows:
 1. Test insulation resistance for each enclosed switch, circuit breaker, component, and control circuit.
 2. Test continuity of each line- and load-side circuit.

B. Testing: After installing enclosed switches and circuit breakers and after electrical circuitry has been energized, demonstrate product capability and compliance with requirements.
 1. Procedures: Perform each visual and mechanical inspection and electrical test indicated in NETA ATS, Section 7.5 for switches and Section 7.6 for molded-case circuit breakers. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

C. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each enclosed switch and circuit breaker. Open or remove doors or panels so connections are accessible to portable scanner.
 1. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each unit 11 months after date of Substantial Completion.
 2. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 3. Record of Infrared Scanning: Prepare a certified report that identifies switches and circuit breakers checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.6 ADJUSTING

A. Set field-adjustable switches and circuit-breaker trip ranges.

3.7 CLEANING
A. On completion of installation, inspect interior and exterior of enclosures. Remove paint splatters and other spots. Vacuum dirt and debris; do not use compressed air to assist in cleaning. Repair exposed surfaces to match original finish.

END OF SECTION 16410
SECTION 262913 - ENCLOSED CONTROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes ac general-purpose controllers rated 600 V and less that are supplied as enclosed units.

B. Related Sections include the following:
 1. Division 16 Section "Transient Voltage Suppression" for low-voltage power, control, and communication surge suppressors.
 2. Division 16 Section "Fuses" for fuses in fusible switches.

1.3 SUBMITTALS

A. Product Data: For each type of enclosed controller. Include dimensions and manufacturer's technical data on features, performance, electrical characteristics, ratings, and finishes.

B. Shop Drawings: For each enclosed controller.
 1. Dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 a. Enclosure types and details.
 b. Nameplate legends.
 c. Short-circuit current rating of integrated unit.
 d. UL listing for series rating of overcurrent protective devices in combination controllers.
 e. Features, characteristics, ratings, and factory settings of individual overcurrent protective devices in combination controllers.

C. Coordination Drawings: Floor plans showing dimensioned layout, required working clearances, and required area above and around enclosed controllers where pipe and ducts are prohibited. Show enclosed controller layout and relationships between electrical components and adjacent structural and mechanical elements. Show
support locations, type of support, and weight on each support. Indicate field measurements.

D. Qualification Data: For firms and persons specified in "Quality Assurance" Article.

E. Field Test Reports: Written reports specified in Part 3.

F. Manufacturer's field service report.

G. Maintenance Data: For enclosed controllers and components to include in maintenance manuals specified in Division 1. In addition to requirements specified in Division 1 Section "Closeout Procedures," include the following:

1. Routine maintenance requirements for enclosed controllers and all installed components.
2. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.

H. Load-Current and Overload-Relay Heater List: Compile after motors have been installed and arrange to demonstrate that selection of heaters suits actual motor nameplate full-load currents.

I. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed and arrange to demonstrate that dip switch settings for motor running overload protection suit actual motor to be protected.

J. Should the contractor submit any substitution (including other approved manufacturers) other than the specified product the contractor shall be responsible for all electrical, mechanical, structural, and architectural revisions as required to accommodate the installation of the substituted equipment at no additional cost to the owner.

1.4 QUALITY ASSURANCE

A. Manufacturer Qualifications: Maintain, within 100 miles (160 km) of Project site, a service center capable of providing training, parts, and emergency maintenance and repairs.

B. Testing Agency Qualifications: An independent testing agency with the experience and capability to satisfactorily conduct the testing indicated, as documented according to ASTM E 548.

C. Source Limitations: Obtain enclosed controllers of a single type through one source from a single manufacturer.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

E. Comply with NFPA 70.
F. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed controllers, including clearances between enclosed controllers, and for adjacent surfaces and other items. Comply with indicated maximum dimensions.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Store enclosed controllers indoors in clean, dry space with uniform temperature to prevent condensation. Protect enclosed controllers from exposure to dirt, fumes, water, corrosive substances, and physical damage.

B. If stored in areas subjected to weather, cover enclosed controllers to protect from weather, dirt, dust, corrosive substances, and physical damage. Remove loose packing and flammable materials from inside controllers; install electric heating of sufficient wattage to prevent condensation.

1.6 PROJECT CONDITIONS
A. Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary utility services according to requirements indicated:

1. Notify Architect at least two days in advance of proposed utility interruptions. Identify extent and duration of utility interruptions.
2. Indicate method of providing temporary utilities.
3. Do not proceed with utility interruptions without Architect's written permission.

1.7 COORDINATION
A. Coordinate layout and installation of enclosed controllers with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 3 Section "Cast-in-Place Concrete."

C. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 7 Section "Roof Accessories."

D. Coordinate features of enclosed controllers and accessory devices with pilot devices and control circuits to which they connect.

E. Coordinate features, accessories, and functions of each enclosed controller with ratings and characteristics of supply circuit, motor, required control sequence, and duty cycle of motor and load.
1.8 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Spare Fuses: Furnish three spare for every six installed, but not less than one set of three of each type and rating.
2. Indicating Lights: Two of each type installed.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Manual and Magnetic Enclosed Controllers:
 d. Siemens/Furnas Controls.
 e. Square D Co.
 f. or approved equal.

2. Variable-Frequency Controllers:
 c. MagneTek Drives and Systems.
 e. Siemens/Furnas Controls.
 f. Square D Co.
 g. or approved equal.

2.2 MANUAL ENCLOSED CONTROLLERS

A. Description: NEMA ICS 2, general purpose, Class A, with toggle action and overload element.

2.3 MAGNETIC ENCLOSED CONTROLLERS

A. Description: NEMA ICS 2, Class A, full voltage, nonreversing, across the line, unless otherwise indicated.
B. Control Circuit: 120 V; obtained from integral control power transformer with a control power transformer of sufficient capacity to operate connected pilot, indicating and control devices, plus 100 percent spare capacity.

C. Combination Controller: Factory-assembled combination controller and disconnect switch.

D. Overload Relay: Ambient-compensated type with inverse-time-current characteristic and NEMA ICS 2, Class 10 tripping characteristic. Provide with heaters or sensors in each phase matched to nameplate full-load current of specific motor to which they connect and with appropriate adjustment for duty cycle.

E. Adjustable Overload Relay: Dip switch selectable for motor running overload protection with NEMA ICS 2, Class 10 tripping characteristic, and selected to protect motor against voltage and current unbalance and single phasing. Provide relay with Class II ground-fault protection, with start and run delays to prevent nuisance trip on starting.

F. Multispeed Enclosed Controller: Match controller to motor type, application, and number of speeds; include the following accessories:
 1. Compelling relay to ensure motor will start only at low speed.
 2. Accelerating relay to ensure properly timed acceleration through speeds lower than that selected.
 3. Decelerating relay to ensure automatically timed deceleration through each speed.

G. Star-Delta Controller: NEMA ICS 2, closed transition with adjustable time delay.

I. Autotransformer Reduced-Voltage Controller: NEMA ICS 2, closed transition.

J. Solid-State, Reduced-Voltage Controller: NEMA ICS 2, suitable for use with NEMA MG 1, Design B, polyphase, medium induction motors.
 1. Adjustable acceleration rate control utilizing voltage or current ramp, and adjustable starting torque control with up to 500 percent current limitation for 20 seconds.
 2. Surge suppressor in solid-state power circuits providing 3-phase protection against damage from supply voltage surges 10 percent or more above nominal line voltage.
 3. LED indicators showing motor and control status, including the following conditions:
 a. Control power available.
 b. Controller on.
 c. Overload trip.
2.4 VARIABLE-FREQUENCY CONTROLLERS

A. Description: NEMA ICS 2, pulse-width-modulated, variable-frequency controller; listed and labeled as a complete unit and arranged to provide variable speed of a NEMA MG 1, Design B, 3-phase, induction motor by adjusting output voltage and frequency.

B. Design and Rating: Match load type such as fans, blowers, and pumps; and type of connection used between motor and load such as direct or through a power-transmission connection.

C. Isolation Transformer: Match transformer voltage ratings and capacity to system and motor voltages; and controller, motor, drive, and load characteristics.

D. Output Rating: 3-phase; 6 to 120 Hz, with horsepower constant throughout speed range.

E. Starting Torque: 100 percent of rated torque or as indicated.

F. Speed Regulation: Plus or minus 1 percent.

G. Ambient Temperature: 0 to 40 deg C.

H. Efficiency: 95 percent minimum at full load and 60 Hz.

I. Minimum Displacement Power Factor at Input Terminals: 95 percent.

J. Isolated control interface allows controller to follow control signal over an 11:1 speed range.

 1. Electrical Signal: 4 to 20 mA at 24 V.
 2. Pneumatic Signal: 3 to 15 psig (20 to 104 kPa).

K. Internal Adjustability: Include the following internal adjustment capabilities:

 1. Minimum Speed: 5 to 25 percent of maximum rpm.
 2. Maximum Speed: 80 to 100 percent of maximum rpm.
 3. Acceleration: 2 to 22 seconds.
 4. Deceleration: 2 to 22 seconds.
 5. Current Limit: 50 to 110 percent of maximum rating.
L. Multiple-Motor Capability: Controller suitable for service to multiple motors and having a separate overload relay and protection for each controlled motor. Overload relay shall shut off controller and motors served by it when overload relay is tripped.

M. Self-protection and reliability features shall include the following:

1. Input transient protection by means of surge suppressors.
2. Snubber networks to protect against malfunction due to system voltage transients.
5. Instantaneous overcurrent trip.
7. Reverse-phase protection.
8. Under- and overvoltage trips.
10. Short-circuit protection.

N. Automatic Reset/Restart: Attempt three restarts after controller fault or on return of power after an interruption and before shutting down for manual reset or fault correction. Restarting during deceleration shall not damage controller, motor, or load.

O. Power-Interruption Protection: Prevents motor from re-energizing after a power interruption until motor has stopped.

P. Status Lights: Door-mounted LED indicators shall indicate the following conditions:

1. Power on.
2. Run.
3. Overvoltage.
4. Line fault.
5. Overcurrent.

R. Indicating Devices: Meters or digital readout devices and selector switch, mounted flush in controller door and connected to indicate controller output current, voltage, and frequency.

S. Manual Bypass: Magnetic contactor shall be arranged to safely transfer motor between controller output and bypass controller circuit when motor is at zero speed. Controller-off-bypass, selector-switch indicator lights set and indicate mode selection.

T. Integral Disconnecting Means: NEMA AB 1, instantaneous-trip circuit breaker with lockable handle.
U. Bypass Controller: NEMA ICS 2, full-voltage, nonreversing enclosed controller with across-the-line starting capability in manual-bypass mode. Provide motor overload protection under both modes of operation with control logic that allows common start-stop capability in either mode.

V. Isolating Switch: Non-load-break switch arranged to isolate variable-frequency controller and permit safe troubleshooting and testing, both energized and de-energized, while motor is operating in bypass mode.

W. Remote Indicating Circuit Terminals: Mode selection, controller status, and controller fault.

2.5 ENCLOSURES

A. Description: Flush- or surface-mounted cabinets as indicated. NEMA 250, Type 1, unless otherwise indicated to comply with environmental conditions at installed location.

1. Outdoor Locations: NEMA 250, Type 3R.
3. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
4. Hazardous Areas Indicated on Drawings: NEMA 250, Type 7C.

2.6 ACCESSORIES

A. Devices shall be factory installed in controller enclosure, unless otherwise indicated.

C. Stop and Lockout Push-Button Station: Momentary-break, push-button station with a factory-applied hasp arranged so padlock can be used to lock push button in depressed position with control circuit open.

D. Control Relays: Auxiliary and adjustable time-delay relays.

E. Elapsed Time Meters: Heavy duty with digital readout in hours.

F. Meters: Panel type, 2-1/2-inch (64-mm) minimum size with 90- or 120-degree scale and plus or minus 2 percent accuracy. Where indicated, provide transfer device with an off position. Meters shall indicate the following:

1. Ammeter: Output current, with current sensors rated to suit application.
2. Voltmeter: Output voltage.
3. Frequency Meter: Output frequency.

H. Current-Sensing, Phase-Failure Relays: Solid-state sensing circuit with isolated output contacts for hard-wired connection; arranged to operate on phase failure, phase reversal, current unbalance of from 30 to 40 percent, or loss of supply voltage; with adjustable response delay.

2.7 FACTORY FINISHES

A. Finish: Manufacturer's standard paint applied to factory-assembled and -tested enclosed controllers before shipping.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and surfaces to receive enclosed controllers for compliance with requirements, installation tolerances, and other conditions affecting performance.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

A. Select features of each enclosed controller to coordinate with ratings and characteristics of supply circuit and motor; required control sequence; duty cycle of motor, drive, and load; and configuration of pilot device and control circuit affecting controller functions.

B. Select horsepower rating of controllers to suit motor controlled.

3.3 INSTALLATION

A. See Division 16 Section "Basic Electrical Materials and Methods" for general installation requirements.

B. For control equipment at walls, bolt units to wall or mount on lightweight structural-steel channels bolted to wall. For controllers not at walls, provide freestanding racks complying with Division 16 Section "Basic Electrical Materials and Methods."

C. Install freestanding equipment on concrete bases complying with Division 3 Section "Cast-in-Place Concrete."

D. Provide an additional two controllers with enclosures and accessories of each size, phase and voltage as required to accommodate changes to resolve interferences or as directed by the Engineer.

E. Enclosed Controller Fuses: Install fuses in each fusible switch. Comply with requirements in Division 16 Section "Fuses."
3.4 IDENTIFICATION
 A. Identify enclosed controller components and control wiring according to Division 16 Section "Basic Electrical Materials and Methods."

3.5 CONTROL WIRING INSTALLATION
 A. Install wiring between enclosed controllers according to Division 16 Section "Conductors and Cables."
 B. Bundle, train, and support wiring in enclosures.
 C. Connect hand-off-automatic switch and other automatic-control devices where applicable.
 1. Connect selector switches to bypass only manual- and automatic-control devices that have no safety functions when switch is in hand position.
 2. Connect selector switches with enclosed controller circuit in both hand and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor overload protectors.

3.6 CONNECTIONS
 A. Conduit installation requirements are specified in other Division 16 Sections. Drawings indicate general arrangement of conduit, fittings, and specialties.
 B. Ground equipment.
 C. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.7 FIELD QUALITY CONTROL
 A. Prepare for acceptance tests as follows:
 1. Test insulation resistance for each enclosed controller bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.
 B. Testing: Perform the following field quality-control testing:
 1. Perform each electrical test and visual and mechanical inspection indicated in NETA ATS, Sections 7.5, 7.6, and 7.16.
 2. Certify compliance with test parameters.
 3. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
C. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect field-assembled components and equipment installation, including pretesting and adjusting solid-state controllers.

D. Test Reports: Prepare a written report to record the following:
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

3.8 ADJUSTING
A. Set field-adjustable switches and circuit-breaker trip ranges.

3.9 CLEANING
A. Clean enclosed controllers internally, on completion of installation, according to manufacturer's written instructions. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

3.10 STARTUP SERVICE
A. Engage a factory-authorized service representative to perform startup service.

B. Verify that enclosed controllers are installed and connected according to the Contract Documents.

C. Verify that electrical wiring installation complies with manufacturer's submittal and installation requirements in Division 16 Sections.

D. Complete installation and startup checks according to manufacturer's written instructions.

3.11 DEMONSTRATION
A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain enclosed controllers and variable-frequency drives.
 1. Train Owner's maintenance personnel on procedures and schedules for starting and stopping, troubleshooting, servicing, and maintaining equipment and schedules.
 2. Review data in maintenance manuals. Refer to Division 1 Section "Operation and Maintenance Data."
 3. Schedule training with Owner, through Architect, with at least seven days' advance notice.
END OF SECTION 16420