Outlier detection in dynamic functional

models

Andrada E. lvanescu!, William Checkley %, and Ciprian

M. Crainiceanu?

1" School of Computing, Montclair State University, Montclair, NJ, USA
2 Department of Medicine, Johns Hopkins University, Baltimore, MD, USA

3 Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
p ) p y? ) )

Address for correspondence: Ciprian M. Crainiceanu, Department of Biostatis-
tics, Johns Hopkins University, 615 N. Wolfe Street, E3636, Baltimore, MD, 21205,
USA.

E-mail: ccrainil@jhu.edu.

Phone: (+1) 410 955 3505.

Abstract: We propose methods for identification of dynamic outliers for sparse
or dense functional data using dynamic z-scores. A dynamic outlier is defined as an
unusual observation in the “future” of a trajectory given the “past” of that trajectory
as well as the past and future of all other trajectories. Dynamic outlier identification
methods can be used prospectively at any time point to estimate if and when the
functional trajectory deviates from its predicted path. In contrast, static outliers are
obtained after the entire data set is collected and can only be used retrospectively.

We will illustrate the difference between dynamic outliers and static outliers using



extensive simulations studies and a longitudinal study of child growth conducted in
Lima, Peru. In this study, dynamic outliers correspond to unusual patterns of growth
for a child at any point of the study (unexpected changes), while static outliers

correspond to unusually large or small children throughout the study.

Key words: child growth; cross-validation; dynamic outlier; dynamic regression;

function-on-function regression; outliers.

1 Introduction

We propose new methods for dynamic outlier detection in the context of functional
sparse or dense data using dynamic z-scores. A dynamic outlier is defined as an
unusual observation in the “future” of a trajectory given the “past” of that trajectory
as well as the past and future of all other trajectories. This is an important statistical
problem motivated by a large number of scientific applications. For example, in
human growth analysis one is interested in whether the latest height measurement
for a child is unusual given the known history of growth of that child and of other
children in the study. Detecting abnormal observations or patterns of growth could
be used for early targeted health interventions and data quality control assessment.
In many growth studies, in addition to the primary measurement (e.g., length of
the baby) one often collects other longitudinal growth information (e.g., weight, head
circumference) and baseline covariates (e.g., mother’s social economic status at birth.)
Thus, we define the “known history of the growth of a child” as the collection of
all measurements up to a particular time point. From a technical perspective, this

requires modeling a functional outcome as a function of its past (e.g., height of a child
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measured in the first 9 months from birth), the past of other functional predictors
(e.g., weight of the same child measured in the first 9 months from birth), the past and
future of the trajectories of other study participants (e.g., the past and future growth
measurements of other children), and additional covariates. The main differences
between dynamic prediction and traditional time series forecasting are: (1) lack of
stationarity assumptions; and (2) the dependence of the prediction on the past and

future of the trajectories of the other study participants.

Given observations, Y;;, for study participant ¢ and time ¢ and any method that

produces a predictor 27t+h at time ¢t + h, h > 0, and a standard deviation of predic-

A~

tion sd(Y;¢n — Yistn), the dynamic outliers score computed at time ¢ 4+ h based on

information up to time t is

~

Yiein — Yiern
sd(Yiten — Yietn)

Lith =

Our proposal is to calculate these z-scores for all study participants, © = 1,...,1, all
time points ¢, and all prediction horizons, h, and identify the z-scores that exceed a
certain threshold, say 3, 4, and 5. We propose to estimate both }//\;’Hh and sd(Y; ¢14n —
l//\;,Hh) using the dynamic functional regression models (Ivanescu et al. 2017), though
other approaches could be used, as well. The idea is conceptually different, targets
different types of outlying information, and leads to different results from existing,
static, outlier detection methods. In particular, the approach is dynamic because
it screens outliers at every observed time point compared to static approaches that
use all available data. Static approaches are useful in retrospective studies when one
is interested primarily in data quality control. In contrast, dynamic approaches are

useful when one is interested in identifying unusual observations as soon as possible

and use these findings for interventions as data are acquired.



Several methods for outlier detection in functional data have been proposed and use
functional principal components (Sawant et al. 2012, Ren et al. 2017, Mejia et
al. 2017), multivariate distances (Hyndman and Shang 2010, Hubert et al. 2015),
and functional depth (Arribas-Gil and Romo 2014, Febrero et al. 2015). All these
methods are static because they require the entire dataset to be collected, cannot
include additional scalar or functional covariates, and have not been applied in a

dynamic context.

Unusual growth patterns have been studied in the context of regression using func-
tional principal component scores for univariate functional data (Zhang and Wei
2015), but methods have not been generalized to multivariate functional datasets
(e.g., simultaneous growth in length, weight, and head circumference) or to the dy-

namic context, when one is interested in future unusual observations.

Our outlier detection approach is based on dynamic regression, where a new model
is fit at every time point. Several methods (Goldberg et al. 2014, Chiou et al. 2016,
Shang 2017a, Shang 2017b, Hyndman and Shang 2025) proposed inferential proce-
dures for prediction using dynamic functional regression. In addition to proposing
predictive models, some methods (Shang 2017a, Shang 2017b, Hyndman and Shang
2025) provided bootstrap-based confidence intervals for the predicted function; their
method is implemented in the ftsa (Hyndman and Shang 2025) R package. However,

these methods do not account for additional fixed effects or functional predictors.

The methodology we propose addresses a novel problem in functional data analysis
where dynamic outliers can be detected. Methods start with using a class of dynamic
prediction models to approximate the expected trajectory for an individual. Then,

a novel metric, the dynamic z-score, is introduced and designed to detect departures
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from the expected path. We ran novel simulation settings to test our proposed meth-
ods where data consists of functional datasets. We also performed new data analysis
strategies for child growth studies. In applications and simulations we conducted, the
numerical results for the proposed methods show that dynamic outliers were detected

in functional or longitudinal data settings.

The paper offers important contributions to the functional data analysis research
arena. The main strengths of our paper are: (1) conceptualizing and implementing a
reasonable approach to detecting outliers dynamically that is novel and responds to a
large and increasing number of scientific problems; (2) methods can be incorporated
in practical research settings; (3) the methods and the problem are fundamentally
different from the large existing literature on outlier detection in functional data; (4)
the methods are practical, reasonable, and tested; and (5) we provide evidence that
the methods detect outlying dynamics in real applications to child growth, which can

have substantial impacts in analyses conducted in real time.

2 Methods

We consider the case when the data structure is of the type Y;;, Z;;, X; fori =1,...,1
and [ = 0,...,t. In our application Y;; refers to the child’s HAZ (height-for-age z-
score) data observed at month 0 through ¢, Z;; represents the WAZ (weight-for-age
z-score) data for the same months, and X; is the sex of the child. For simplicity
we focus on the case when observations are sampled at the same time points across
subjects, but methods apply to sparse, uneven sampling across subjects, as well. We
are interested in two related problems. Given a sample of functions, Y;;, ¢ =1,...,1,

[ =0,...,t and for every time point ¢t + h € {t + 1,...,15} we would like to identify



and quantify: (1) outlying observations Y.y, at time ¢ + h > ¢; and (2) outlying

patterns {Y; ;1p : t + h > t}.

2.1 Dynamic prediction

Denote by 1//\;7t+h = E(Yitn|Xi, Yis, Ziy) the predicted “future” trajectory for subject
i, which depends on the past of the time-varying processes Y (-) and Z(-) as well as on
the time-invariant covariate X;. We are interested in conditional models of the type
?’iﬂh = f(Xi,Yi1, Ziy), where f(-) denotes a function whose form will be specified
and will be modeled either parametrically or semiparametrically. There are many
options for building predictive models via specifications of the function f(-). Here we
use the strategy (Ivanescu et al. 2017) that considers a class of explicit regression

models. To ensure that the presentation is self-contained we re-describe this class

here. The simplest model considered is the BENchmark DYnamic (BENDY) model

Yiien = XiVernt + YioBoutnt + YiiBrirnt + ZioOoisnt + ZitOrpsnt + €ipn - (2.1)

The model parameters depend on when the prediction is performed, ¢, and at what
time into the future, ¢t + h. This explicit dependence ensures that predictions are
targeted to the time point where predictions are produced and use the available
historical data information. A potential criticism of model (2.1) could be that the
outcome may not depend only on the last and first available data points, but also
on the observations between them. To address this, we extend (2.1) to the class of

Dynamic Linear Models (DLM)

t t
Yieen = Xiviena + > YisBiosne + Y ZiaOrasne + € - (2.2)
=0 =0

The model has a functional data interpretation as well, and can be written as

t t

Yi1Bi4n,dl + / Zi 101 44ntdl + €41, - (2.3)

Yiten = XiVegne + /
1=0

=0
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In practice, model (2.2) can be unstable due to the high correlation among predictors.
To alleviate this problem one can impose quadratic penalties on the model parameters
Bit+nt and Oy 44p,¢. More precisely, DPFR imposes a different quadratic penalty on
Bit+ns for every fixed ¢ and h, whereas DPFFR imposes a quadratic penalty for every
fixed ¢. Separate prediction models are fit for each (¢, h) pair for BENDY, DLM, and

DPFR. The only exception is DPFFR where one model is fit at month t.

2.2 Dynamic z-scores

In this section we describe the modelling strategy for constructing dynamic z-scores.
The term that involves the historic data Y;,; from equation (2.3) contains the model
parameter 3415+, which is assumed to be a smooth function over [ and that depends
on the historic time point [ and lag time h. All our models assume that this function
can be expanded as [jin: = EkK:ll By i (I,t 4+ h)ay,, where By (-,-) is a bivariate
basis evaluated at points [ (past of the trajectory) in the first dimension, and times
t + h (future of the trajectory) in the second. Thus, the integral fltzo YiiB1t4ndl in

model (2.3) can be approximated by the Riemann sum approximation

k=1 =0 k=1

K1 t _ K,
Z { Z By (Lt + h)}/;,l}ak,t =Y Aiikt+nQit

where 271 = A;Y;; and A, is the length of the intervals in the Riemann approximation.
The quantities Aj ;g +n = Zfzo By (L, t+ h)ﬁ,z are known because Y; ; are considered
observed for [ < t, and Bjg(-,-) are known basis functions. Similarly, the term

flt:o Z; 161 ¢+n,4dl from equation (2.3) can be approximated by the Riemann sum

Ko t N Ko
> { > Bax(lt+ h)Zz‘,l}bk,t = Apiprenbis -

k=1 =0 k=1
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Therefore, model (2.3) can be approximated by the following additive model

Kl KQ
Yiien = XiVigne + E Al k4nlrs + g Agiktrnbrs + € - (2.4)
k=1 k=1

This model is estimated using penalized spline estimation based on the criterion
D WYisn — st + by, a,b)[]* + AgPu(@) + AsPy(b) | (2.5)
ih

where 41;(t + h; 7, a, b) is the mean of Y; 1), and =, a, b are the vectors containing the

corresponding parameters. The penalized criterion in equation (2.5) can be shown

to be equivalent to a specific mixed effects model, which allows to conduct inference

using standardized software; see Crainiceanu et al. 2024, Ch. 6.2.1 for more details.

Irrespective of the model fit, Y; ¢y, = 2,t+h + € ¢+, and, under the normality assump-

~

tion of parameter estimators in model (2.3), Y; 44 is also normal at each time point

t + h because these expressions are conditional on the past observations, Y;; and Z;;,

[ =0,...,t. We define the z-scores Z; ;,, = (Y 14n —27t+h)/\/\/ar{?i,t+h} + Var{e; ;5 }
where Y; ;15 is the observed data for child ¢ at time ¢ + h, }//\;,Hh is the prediction of

Y 14+ for child ¢ given their data history.

The predictions 27t+h are obtained based on the corresponding models using published
methods and code. For BENDY and DLM calculations are based on the standard
prediction procedures for parametric regression. For DPFR and DPFFR calculations
are based on best linear unbiased prediction (BLUP) in the associated mixed effects
representation of penalized regression (Crainiceanu et al. 2024, Goldsmith et al. 2011,
Scheipl et al. 2015). Our previous work allowed us to implement these methods using
stable software such as the refund (Goldsmith et al. 2025) and mgecv (Wood 2025)
packages in R (R Core Team 2025). The dynamic z-score can be compared to the

Normal or t-quantiles, though here we use the more conservative choice gig—(t+1)a;
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which is the 1 —a/2 quantile of the ¢ distribution with 16 — (¢4 1) degrees of freedom.
We used t + 1 degrees of freedom because the length of the history used for variance
estimation is relatively short. Here Var(}A/LtJrh) quantifies the variability of the predic-
tion of the true trajectory, whereas Var(e; ;) quantifies the additional, irreducible,

variability associated with observations around the long term trend. Note that one

can also produce the symmetric 100(1 — «)% point-wise confidence interval for future

observations Y; ;15 as 2,t+h + G16-(t41).0 \/Var{ﬂtJrh} + Var{e; ;5 }.

Obtaining the variance estimates from these models requires some additional effort,
but all necessary quantities are readily available. More precisely, for either DPFR
or DPFFR we will use the sandwich variance estimator \//a\r(?iﬁh) = PJA/Pf, where
P, = [Xi, {Yii}i_o, {Zi1}i_,] is a row vector that consists of the predictive information
for child ¢ up to time ¢ and V is the estimated covariance of the model parameters. We
use Bayesian shrinkage estimation of the fixed and random effect model parameters
(Wood 2025, Wood 2006), while the variance of the residuals is estimated using the

average of the squared estimated residuals.

3 Application to the CONTENT study

The CONTENT study is a child growth study conducted in Pampas de San Juan Mi-
raflores and Nuevo Paraiso, two peri-urban shanty towns with high population density,
25 km south of central Lima, Peru. These peri-urban communities (Checkley et al.
1998, Checkley et al. 2002) are comprised of 50,000 residents, the majority of whom
are immigrants from rural areas of the Peruvian Andes who settled nearly 35 years
ago and later claimed unused land on the outskirts of Lima. In the last two decades,

Pampas has undergone many economic and social developments. In 1989, most homes

9



10

were temporary structures, constructed of wooden poles and woven thatch, without
water or sewage lines. Currently, more than 85% of homes are constructed from brick
or cement with in-home water and sewage lines. The study was approved by the Eu-
ropean Union Ethics Committee, A.B. PRISMA and Universidad Peruana Cayetano
Heredia, in Lima, Peru, and the Bloomberg School of Public Health, Johns Hopkins
University, in Baltimore, USA. Mothers or caregivers provided written informed con-
sent. Dynamic functional regression models were applied to the CONTENT data
to identify potential dynamic outliers. There were a total of I = 197 babies in the
dataset (Grajeda et al. 2016, Ivanescu et al. 2017, Leroux et al. 2018, Crainiceanu
et al. 2024). Dynamic identification of outliers in the HAZ (height-for-age z-score)
data is the primary focus of our analysis. Given the HAZ history of a child, dynamic
outlier identification for HAZ was conducted using four dynamic prediction (Ivanescu
et al. 2017) methods: BENDY, DLM, DPFR, and DPFFR. The CONTENT dataset
was made available in refund (Goldsmith et al. 2025) and several analyses are pre-
sented on the website www.functionaldataanalysis.org accompanying the recent

monograph on FDA with R (Crainiceanu et al. 2024).

3.1 Data imputation

The CONTENT data set contains measurements made at unequal intervals, with
more observations immediately after birth and fewer as time progressed. A first step
was the computation of the monthly average value for HAZ and WAZ. A second step
was to reconstruct the individual trajectories and impute observations for the months
with no observations. This was done using functional principal components method
(Goldsmith et al. 2013), which both smoothed the data trajectories and provided

16 observations for each child, one observation per month. Noise was added back to
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the reconstructed FPCA trajectories by: (1) computing the variance of the observed
residuals at each month separately and taking the minimum variance across months;
and (2) simulating independent random errors from a zero-mean normal with this
variance and adding them to the smooth trajectories. Figure 1 displays the side by
side comparison of the data before and after imputation for both HAZ and WAZ.
The resulting data set is highly realistic and mimics the main patterns in the original
data. All methods presented in this paper refer to the complete HAZ and WAZ data

shown in the second column of Figure 1.

3.2 Covariate unadjusted outlier identification

In this section several case studies are discussed based on the analysis of the HAZ
data without additional covariates, while Section 3.3 provides results for covariate-
adjusted analyses. The section begins with identifying subjects with outlying HAZ
dynamic z-score values. For simplicity we present results based on historic data from
birth until month 3, and from birth until month 7, respectively. However, methods

can and are applied to every point in the history of the growth curves.

When using the first three months as historical data for prediction of the future
trajectory we obtained 8% outliers when using a threshold for dynamic z-scores of —4
and 15% outliers when using a threshold of —3. When using the first seven months
as historical data we obtained 0.12% outliers for a z-score threshold of —4 and 1.2%
outliers when using a threshold of —3. The percent number of outliers was obtained
by dividing the total number of outliers by the number of observations for all children

at all future points.

For illustration Table 1 displays all outliers for two children (IDs 86 and 135) by
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HAZ
0
L
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0
1
WAZ
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month month

Figure 1: HAZ (first row) and WAZ (second row) for the original data (first column)

and reconstructed data (second column).

method, time at the time of prediction, and time in the future where prediction is
conducted. Outliers were detected using the quantile gi6_(;41),o discussed in Section
2.2. Results indicate that methods tend to be in agreement irrespective of the model
used for data fitting. To better understand these results, consider the child with
data shown in the first row in Figure 2 (ID 86). This is a child who starts close

to the World Health Organization (WHO) average of HAZ (—0.6 HAZ at baseline)
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Table 1: Dynamic identification of HAZ outliers for 2 children. Numbers in blue
represent the months between 8-15 with HAZ outliers identified at times 3 and 7.

Numbers in black represent the corresponding dynamic z-scores.

t=3 t=7
Covariate-unadjusted
ID 86
DPFFR 8 9,10, 11, 12, 13, 14, 15 8, 9, 10, 12
N N N N N R 2 N ~ |
—-6.6 —6.7 —6.8 —6.7 —6.5 —5.7 —4.8 —3.6 —2.3 —2.4 —2.4 —-2.3
DPFR 8, 9,10, 11, 12, 13, 14, 15 8
M M S S S S N N N~
—-6.2 -5.8 —-6.0 —-6.2 —6.1 —5.7 —4.3 —3.2 —2.4
DLM 8, 9,10, 11, 12, 13, 14, 15 8 , 12, 13
M M S S S N N N N N
—-6.2 —-5.8 —-6.0 —6.2 —6.1 —5.7 —4.4 —3.2 —2.5 —2.3 —2.4
BENDY 8, 9, 10, 11, 12, 13, 14, 15 8, 9, 10, 11, 12, 13, 14, 15
M S S S S N N N o S S S S
—-5.7 —5.6 —5.9 —5.8 —5.8 —5.2 —4.3 —3.3 —2.4 —2.6 —2.9 —2.9 —3.1 —2.9 —2.7 —2.6
ID 135

DPFFR 10, 12, 13, 14 10, 12, 13, 14
N T
—2.6 —2.6 —3.5 —3.3

~
—2.8

DPFR 12, 13, 14 10, 12, 13, 14

~ o~~~ ~

—2.8 —3.7 —3.4

—2.4 —-3.3 —-3.0 —2.4 —-2.8 —3.7 —-3.2
DLM 12, 13, 14 10, 12, 13, 14
NN NN AING TN
—-2.3 -3.3 —-2.9 —2.5 —2.8 —-3.6 —3.2
BENDY 13, 14 13
NN N
—3.0 —2.8 —2.4

and stays there for the first several months. However, after month 7 the HAZ (static
z-score) decreases until about month 13, even though it remains above —1.5, and
would not trigger an intervention. However, all dynamic models indicate that the
dynamic z-scores for t = 3 and t+h =8, ..., 15 are negative and very large in absolute
value, indicating that investigation and, possibly, intervention may be necessary. This
indicates that, at least for this child, the method provides a credible early warning
of stunting behavior. Interestingly, the observations at months 8 through 10, and
12, are identified as outlying using both historical data up to month 3 and month 7.
However, using data only up to month 3 identifies a few additional outliers (11, 13,
14 and 15). The agreement is reassuring, while the difference could be explained as
follows. Having the four initial observations of HAZ (—0.6, —0.8, —0.5, and —0.2)

is inconsistent with HAZ values of —1.2, —1.1, and —1.0 at months 13, 14 and 15,
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Figure 2: Application to child growth data. HAZ trajectories (left column), WAZ tra-
jectories (middle column) and HAZ dynamic prediction intervals in orange (right column)
for t = 7 corresponding to study participant ID 86 (first row) and ID 135 (second row).

Observed data shown in blue solid line. Scenario: Covariate-adjusted.
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respectively, whereas these values are not considered that extreme given the additional
observations in the history up to month 7 (—0.7, —0.5, —0.7, and —0.7). We contend
that using dynamic z-scores provides quantification to a very natural question in this
type of studies: given the data for an individual up to time t and data for everyone
else up to time ¢ + h, what new observations are outlying. This is different from time
series forecasting, because data information about the future is borrowed from the

trajectory of other individuals and stationarity is not required.

3.3 Covariate adjusted outlier identification

The results of the previous section were based solely on the HAZ history. We now
focus on identifying HAZ outliers based on HAZ and WAZ history as well as sex. The
effect of the sex covariate was modeled as linear effect of time and BENDY, DLM,
DPFR and DPFFR were used to calculate dynamic z-scores. Table 2 displays the
same results as Table 1, but for the case when we further adjust for the dynamic

history of WAZ as well as sex.

The adjusted and unadjusted analyses provide qualitatively the same results. For
example, for the first child (ID 86) the months in the future identified as outliers are
almost identical based on data at 3 months (compare Tables 1 and 2). For the second
child (ID 135) the months when outliers are identified agree closely when predicting
at month ¢t = 7, with more differences when predicting at time ¢ = 3. In this case, all
covariate-adjusted models, except DPFR, identify more outliers than the unadjusted
analyses. This could be due to the very short history (¢ = 3, hence 4 data points)

and possible instabilities of the fitting methods for such extreme cases.

The right panels in Figure 2 illustrates the prediction results based on the DPFFR

15
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Table 2: Dynamic identification of HAZ outliers for 2 children (covariate-adjusted).
Numbers in blue represent the months between 8-15 with HAZ outliers identified at

times 3 and 7. Numbers in black represent the corresponding dynamic z-scores

Covariate-adjusted

ID 86
DPFFR 8, 9,10, 11, 12, 13, 14, 15 9, 10, 11, 12
R R R T R G N N N e
—-4.9 -5.0 —-5.1 —-5.1 —-5.1 —4.5 —-3.9 —3.0 —2.4 —-2.3 —-2.3 —-2.4
DPFR 8, 9, 10, 11, 12, 13, 14, 15 8 , 10, 11, 12, 13
NN NG NG LN SN A Ny NGNS AN NI Ny
—4.9 —-5.4 —-5.7 —5.2 —5.4 —5.6 —4.2 —3.6 —-3.3 —2.5 —-2.7 —-2.5 —-2.4
DLM 8, 9,10 11, 12, 13, 14, 15 8 , 13
M N e M S e W ~
—4.8 —4.3 —4.4 —4.5 —4.5 —4.2 —-3.2 —2.7 —2.4 —2.4
BENDY 8, 9, 10, 11, 12, 13, 14, 15 8, 9,10, 11, 12, 13, 15
M~ M M e N M N N R I N N
—4.0 —3.8 —4.1 —3.8 —3.8 —3.4 —2.9 —2.7 —2.4 —2.4 —2.7 —2.5 —2.7 —2.4 —2.3

ID 135
DPFFR 8, 9,10, 11, 12, 13, 14 10, 12, 13, 14
O~ ~ ~ =~
—2.5 —2.4 —4.0 —2.2 —4.0 —4.7 —4.3 —2.9 —2.9 —-3.7 —3.3
DPFR 8 , 10, 13
~ T =~
—3.5 —2.8 —2.5
DLM 8 , 10, 12, 13, 14 12, 13, 14
~ o~ T T = o~ =~
—-2.2 =2 —3.6 —4. 3.6 —-2.9 —-3.7 —-3.0
BENDY 10, 12, 13, 14 10, 13,
~ o~ T ~ '~
—2.3 —3.0 —3.7 —3.3 —2.3 —2.9

covariate-adjusted method for the two children (IDs 86 and 135) based on data up
to month ¢ = 7. The orange areas are the corresponding 95% confidence intervals.
The dynamic prediction intervals provide a helpful visual tool for a fast identification
of dynamic outliers, though they depend on the choice of the confidence interval,

whereas the dynamic z-scores are independent of the level of the confidence interval.

3.4 Comparisons with static outlier detection methods

There are many methods for identifying outliers in functional data and several of
them have software implementations. These methods are not directly comparable to
our approach because they are static, retrospective, and do not include additional
time-invariant or time-dependent covariates. Here we will show that there are major

differences between static and dynamic outliers methods in practice. Comparing the
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methods is not straightforward, as static methods focus on identifying an entire curve
and do not include covariates, whereas our methods are focused on identifying specific
outliers given a past history and can include covariates. Regardless, we will apply
the static methods and compare them with the new, dynamic, method introduced
in this paper. More specifically, we fix a length of the history, say 7 months, and,
for each subject, we calculate the average absolute value of the dynamic z-score for
months 8 through 15. Study participants are then ranked in decreasing order from
the largest to the smallest average absolute z-score. We repeat the procedure for the
maximum absolute z-score and the number of outliers (absolute z-scores larger than

the quantile ¢i6_(111),a, though stricter definitions could be used, as well).

We compare our methods with static outlier detection approaches designed for mul-
tivariate functional data. In particular, we focus on methods based on the functional
band depth for univariate functional data (Lopez-Pintado and Romo 2009) and ex-
tended to multivariate functional data (Ieva and Paganoni 2013, Ieva et al. 2019).
The corresponding functions in R are multiMBD and multiBD, where “multi” stands
for multivariate functional data, “BD” stands for band depth and “MBD” stands
for modified band depth. These functions are implemented in the roahd (Ieva et al.
2019) R package. We also compare our approach to the outliergram (Arribas-Gil and
Romo 2014) approach introduced for univariate functional data. The corresponding
function is outliergram implemented in the roahd (Ieva et al. 2019) R package
that also provides extensions to multivariate functional data. The roahd (Ieva et al.
2019) R package offers an implementation version of multivariate outliergram for
multivariate functional data. For the multivariate outliergram approach (referred as
moutliergram in our study) we used the default critical F-value of 1.5, which re-

sulted in 14 outliers, while an F-value of 2, identified 10 outliers. The band depth
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approaches do not offer a cut-off point for defining outliers. Therefore, we ranked the
depths for every subject and retained a number of subjects equal to the number of

subjects identified by the multivariate outliergram approach.

For our DPFFR dynamic outlier detection we distinguish three approaches for iden-
tifying subjects with large dynamic outliers: DPFFR, ., DPFFR ., and DPFFR,,,
corresponding to the average, maximum, and number of dynamic z-scores with an
absolute value greater than the t quantile gi6_(1+1),a, Tespectively. For illustration
purposes we use historic data up to ¢ = 7 months and relied on the DPFFR dynamic
z-scores calculated at all future months ¢t + h € {t + 1,...,15}. The top 10 outly-
ing individuals for each method were compared and the confusion matrix is provided
in Table 3. There were 37 different IDs identified in the top 10 across all methods
presented. For example, there were 18 individual curves that were not identified as
outliers by moutliergram or DPFFR,,., (indicated as (0,0)), there were 9 outliers
identified by moutliergram but not by DPFFR,.x (indicated as (1,0)), there were 9
outliers identified by DPFFR,,.x but not by moutliergram (indicated as (0, 1)), and

there was only 1 outlier identified by both methods.

Table 3 indicates that: (1) static and dynamic methods do not agree in terms of iden-
tifying outliers; (2) DPFFR,. and DPFFR,.y, as well as DPFFR,,. and DPFFR,,,,
have the highest agreement among DPFFR-derived methods for outlier detection;
and (3) some static methods agree quite well among themselves. We emphasize that
this is not how we propose to use our outlier detection algorithms; this was done only
for comparing to existing static methods, which required substantial changes to our
procedure to even obtain something that is comparable. To summarize, dynamic and

static outlier identification are different both in terms of how they are defined and
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Table 3: Results for outlier detection by several static methods and dynamic detection
at t = 7 with DPFFR. Results “0” and “1” refer to the outlier detection results

(1=detected, 0=not detected).

Methods
multiMBD multiBD DPFFRave DPFFRmax DPFFRny
0 1 0 1 0 1 0 1 0 1
moutliergram
0 17 10 17 10 17 10 18 9 18 9
1 10 0 10 o) 10 0 9 1 9 1
multiMBD
0 23 4 18 9 18 9 17 10
1 4 6 9 1 9 1 10 o
multiBD
0 18 9 18 9 17 10
1 9 1 9 1 10 (4]
DPFFRave
0 24 3 24 3
1 3 T 3 7
DPFFRyax
0 22 5
1 5 5

used and in terms of their results. More information about the top 10 outliers are

posted in the appendix material.

To better understand the differences between the type of outliers identified by the
different methods, we now visualize some of these outliers. The child with ID 17
was identified as an outlier by static and dynamic methods, but for different reasons.
Indeed, the HAZ and WAZ trajectories for this study participant are shown as blue
solid lines in Figure 3. This study participant had high values for WAZ for almost
the entire time range, except for the first two months. The HAZ values go up for
the first 6 months, as well, from 0.8 to about 1.5, but they go down again to below
0.8 at month 15. Dynamic methods identify this subject as an outlier because the

decrease in HAZ after month 7 is very unusual given the HAZ trajectory up to month
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Figure 3: HAZ and WAZ data (gray lines) for 197 children. The highlighted curves
correspond to data observed for four children (ID 17 in blue, ID 86 in orange, ID 32

in red, and ID 132 in green).

7 and the continuous increase in WAZ. Static methods pick up these unusual patterns
because the child was the heaviest (at least after month 7) and among the tallest in
this group. However, dynamic methods would detect the unusual pattern of growth
at month 8 and 9, when information is actionable, whereas static methods would
need to wait until month 15, when it is too late for an intervention. The second
example is the child with ID 86, whose data are displayed as orange solid lines in
Figure 3. This study participant was identified as a strong outlier by the dynamic
approach, but was not identified as an outlier by any of the static methods (rank 164
for multiMBD and 142 for multiBD out of 197 children, where rank 1 is most and 197

is least outlying). This child’s trajectory is characterized by a decreasing HAZ trend
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after an initial increase in HAZ. This led to a predicted HAZ that was consistently
higher than the actual observed HAZ values. This result indicates that static methods
are measuring something fundamentally different from dynamic models, at least for
this subject. The third example is the child with ID 32, whose data is shown as solid
red lines in Figure 3. This study participant was identified as an outlier by two of the
static methods (rank 1 for multiMBD and rank 4 by multiBD) but was not identified
by any of the dynamic outlier detection methods. The reason is that this is a child
who is among the lightest and shortest in the cohort, but their growth pattern is not
identified as abnormal. The fourth example is the child with ID 132, whose data is
shown in green solid lines in Figure 3. This study participant was identified by the
multivariate outliergram method as a shape outlier. This may be due to the WAZ
data that exhibited a sharp decline followed by a sharp rise in WAZ data in the first
9 months. For this child the HAZ data indicated a possible stunting pattern, as a

dynamic z-score of —3.58 was observed at month 9.

4 Simulation study

In this section we focus on comparing the performance of the dynamic and static
outlier identification methods when two different types of dynamic outliers of varying
magnitude are added to realizations of Gaussian Processes. Data sets were initially

simulated without outliers from the following data generating mechanism

4

Yi(t) =) Gintn(t) + € - (4.1)

k=1

We used the functions ¢;(t) = /1.5sin(.875mt), ¢o(t) = V/1.5cos(.8757t), ¢s(t) =
Vv 1.5sin(nt), and ¢4(t) = v/ 1.5cos(nt). The coefficients were simulated as independent

&k ~ N(0,\), where A\ = 0.5*7! for k = 1,2, 3,4. Functions were simulated across
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the equally spaced grid t,, = {55 for m = {0, 1,...,100} and each simulation included
I = 200 curves. Different levels of noise were simulated, and we summarize results
for the case €, ~ N(0,0%). We took o, = 0.4 for Section 4.1 and this value was
lowered to o. = 0.1 for Section 4.2. In Sections 4.1 and 4.2 we provide simulation
results for detecting two types of outliers, respectively. Within each section, the
magnitude of each type of outlier is varied to cover a wide range, from very small to

very large deviations. We contend that these scenarios are an important contribution

in themselves as they provide the first simulations of this type.

4.1 Simulation of type I dynamic outliers

Once the data was generated from model (4.1), a trajectory i was sampled at random
and a dynamic outlying trajectory was induced, as described below. More precisely,
the constant C' € {—1.5,~1,-0.8, 0.4} was added to Yj(t,,) for t,, = {55 for m >
59. To visualize the size of the jump induced in the data, Figure 4 displays four
simulated data sets (gray lines) with one outlier trajectory added (original trajectory
shown in blue, modified trajectory shown in red). The panels are organized from the
largest (C' = —1.5 in the first row, first column) to the smallest jump (C' = —0.4
second column, second row). The outlier starts at ¢,, = 0.59, but this choice is
for illustration purposes only. The magnitude of the outlier depends on the range
of the data, the size of the noise, and the complexity of signal. Note that if the
two trajectories were not highlighted, one could probably not detect the unusual
pattern shown in red by simply inspecting the gray plots. Instead, one would be much
more focused on the extreme trajectories either at the top or bottom of the panels.

Dynamic outlier identification methods introduced in this paper are designed to detect

structural changes in individual trajectories, as shown in Figure 4. Existing, static
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outlier detection models are not designed with the same aim. Our simulations will
show that, indeed, dynamic and static outlier detection methods perform differently.
This should not be surprising, as they are designed for different purposes and use

different optimization criteria.

4.1.1 Results

For each magnitude of deviations C € {—1.5,—1,—0.8,—0.4} a total of B = 300
datasets were simulated, each containing I = 200 trajectories. For each data set,
dynamic modeling was performed using BENDY, DLM, DPFR, and DPFFR, the
dynamic z-scores were calculated for each method and time point ¢, > 0.59, and then
the absolute value of the z-scores were averaged within the method for ¢,, > 0.59.

More sophisticated approaches could be used, but here we keep things simple.

Results are summarized in Figure 5 by method (each method is indicated by a different
shade of red) and jump size, C, from the highest jump C' = —1.5 (left) to the lowest
jump C' = —0.4 (right). Each boxplot displays the average absolute value of the
z-score for all values of the function between 0.59 and 1; there are a total of 300 such
observations for each boxplot corresponding to the number of simulations. Methods
are all applied on the same data sets to make results comparable. As expected,
across methods, as the size of the jump C' decreases, the average absolute z-score
decreases indicating more power to detect jumps. Indeed, for a fixed shade of red
compare boxplots from left to right to notice this trend. Some methods, such as DPFR
and DPFFR, perform consistently better, while DLM performs worse (compare the
boxplots in darker versus lighter shades of red.) BENDY performs better than DLM
in terms of the median, though it is also much more variable (compare the lightest

shade of red to the next lightest shade of red).
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Figure 4: Four simulated functional datasets with I = 200 trajectories (light gray).
The simulated dynamic outlier (red line) is obtained by adding a constant, C', to the
original trajectory (dashed blue line). Scenario: C' = —1.5 (first row, left panel),
C' = —1 (first row, right panel), C' = —0.8 (second row, left panel), and C' = —0.4

(second row, right panel)
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Figure 5: Distribution over 300 simulations of the average of absolute z-scores for four

methods (BENDY, DLM, DPFR, DPFFR) and four jump levels (C=-1.5,-1,-0.8,-0.4).

4.1.2  Comparison with static outlier detection methods

Using the same scenario described in the previous section, we compare our methods
to methods designed for static outlier detection. We have done our best to implement
and interpret these methods according to how they would be used in practice. For
example, for the BD method, the band depth was computed for each function within
each data set. The calculated band depths were then sorted in increasing order
and the function with the smallest band depth (most outlying) was assigned rank
1 while the function with the highest band depth was assigned rank 200 (because
every simulated data set had I = 200 functions). Each simulated data set contains
one simulated dynamic outlier, which receives a rank according to any method and
these ranks are then accumulated over each method and simulation. Our dynamic

outlier detection methods can also be used for ranking using the average, maximum,
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or number of z-scores with absolute values larger than the t quantile gi01-59 -

Figure 6 provides the boxplots of the distributions of the ranks of the outlier accord-
ing to various methods. Recall that lower rank is better, indicating that the outlier
is given a higher importance as a potential unusual observation. Each subplot corre-
sponds to a size of the outlier with larger outliers (C' = —1.5) to the left and smaller
outliers (C' = —0.4) to the right. We used 12 dynamic outlier detection methods by
combining the four dynamic prediction methods with three summaries (average, max,
and number of absolute values of z-scores above the t quantile g91-594). In Figure
6 the labels are organized the same way. For example, DPFR _ave is the method
DPFR using the average of the absolute z-scores and DLM _nr is the dynamic linear
regression with the number of absolute values of z-scores larger than the t quantile
q101-59,o- We compared our dynamic outlier detection methods with six static outlier

detection methods; see Section 4.1.3 for details.

Figure 6 indicates that dynamic methods perform well at identifying the outliers
among the top ranked curves. In particular, DPFR_ave, DPFFR_ave, DPFR _nr, and
DPFFR _nr perform very well for C' = —1.5 and C' = —1.0, with DPFR _ave, and
DPFFR_ave performing better for C = —0.8. As the outliers are getting smaller,
dynamic models have a harder time identifying the outlier curve as the top likeli-
est curve to be different, but continue to rank it close to the top. DPFR_ave and
DPFFR_ave continue to perform the best even for small deviations of the outlying
curve C' = —0.4. In contrast, all six traditional (or static methods) cannot identify
the dynamic outlying curves, with the median rank being consistently close to 100,
or roughly in the middle of the I = 200 curves. Moreover, the static methods are

not sensitive to the size of the jump, whereas the dynamic outlier detection methods
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Figure 6: Simulation study results for four jump levels C' for each method (organized
from C = —1.5, —1, —0.8, —0.4 within subpanels from left to right). Each boxplot
corresponds to a method and provides the distribution of the rank of the true outlier

evaluated over 300 simulations.
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perform better for larger jumps. This should not be surprising, given the intended
use of the static outlier identification methods, but it shows that dynamic outlier

identification is a different problem than traditional functional outlier identification.
4.1.3  Implementation strategies

This is the list of outlier detection methods in Section 4.1.2.

e Outliergram: Method proposed by Arribas-Gil and Romo (2014) implemented

in the R function roahd: :outliergram with default arguments.

e BD and MBD: The Band Depth (BD) and Modified Band Depth (MBD) meth-
ods proposed by Lopez-Pintado and Romo (2007, 2009) and implemented in the

R functions roahd: :BD and roahd: :MBD, respectively, with default arguments.

e MUODShapeT, MUODAmplIT, MUODMagnT: The massive unsupervised out-
lier detection (MUOD) method proposed by Azcorra et al. (2018) and im-
plemented in the R function fdaoutlier::muod (Ojo et al. 2021) with the
tangent argument. The value indices for shape, amplitude, and magnitude

were obtained and provided a computed index for each case.

e BENDY ave, BENDY max, BENDY nr: BENDY method of ranking based on
the average, maximum, and number of absolute z-scores larger than the t quan-

tile q101-59,o. Similar for DLM, DPFR, and DPFFR.

4.2 Simulation of type II dynamic outliers

The type I dynamic outlier consists of a constant change for one study participant af-

ter a particular point. The type IT outlier consists of an incremental change/deviation
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from the individual trajectory after a particular time point. More precisely, the de-
viation function is L(t,,) = —0.4 X I} cjo.50,077 — 0.8 X Iy, c0.7,08 — 1 X L4, c(0.8,0.9 —
1.5 X Iy, c(0.9,1.0- Figure 7 displays this deviation for four simulated data sets (gray
lines) with one outlier trajectory added (original trajectory shown in blue, modified
trajectory shown in red). The type II dynamic outlier is relatively small when ¢,
close to 0.6 and increases when t,, is close to 1. All simulations and results followed

the same exact procedure as in Section 4.1.
4.2.1 Results

Dynamic outlier detection methods were performed at nine time points in between
the [0,1] domain. The dynamic z scores for each method were calculated starting
at each of the time points (0.59,0.6,0.65,...,0.95). At each time point where dy-
namic methods were performed, dynamic z scores were computed at all time points
in the future, and results were summarized as in Section 4.1. Results are summa-
rized and shown in Figure 8 across 300 simulations. As in Section 4.1, all static
outlier detection methods failed to identify the type II outlier. At 0.59,0.6,0.65,0.7
all our methods consistently identify the outlier as the top outlier. However, after 0.75
the performance of methods started to degrade, though BENDY _ave, BENDY max,
BENDY nr, DPFFR_ave, and DPFFR_max continue to perform very well, though
they also fail to detect the outlier at ty = 0.95. The reason for this is that there are
fewer data points [to, 1] and the deviations between Y;() in [to, 1] and Y;(¢o) are small.
Moreover, for the time point 0.95, the simulated outlier has already been a dynamic
outlier between time frame 0.59 and 0.95. On the other hand, when outlier detection
methods were applied earlier, such as at 0.59, the dynamic outlier was detected by

all dynamic methods and across all future time points as a top outlier.
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Figure 7: Simulated datasets and type II dynamic outlier. Four simulated functional
datasets with I = 200 trajectories (light gray). The simulated dynamic outlier (red
line) is obtained by adding a gradual level shift, L(t,,), to the original trajectory

(dashed blue line).

5 Summary

We have introduced methods designed to identify dynamic outliers in functional data.
The main ideas are to: (1) use the historical information up to a given point; (2) pre-
dict the future of the trajectory based on the subject-specific historical information,

population trajectories, patterns, such as time-dependent and independent covari-
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Figure 8: Results for dynamic outliers of type II.

ates; and (3) identify subject-specific outliers using the z-score for the observed ver-
sus predicted values. These methods are based on dynamic functional regression and
produce outliers that are both theoretically and practically different from existent

(static) methods for outlier detection on functional data. Simulations show that dy-
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namic prediction identified even small dynamic outliers, while existing methods did
not. In the CONTENT study application we have shown that there is very little
overlap between the top outlier candidates using dynamic and static outliers. Dy-
namic outlier detection approaches are especially useful in the context when one is
interested in early detection of abnormal patterns, such as growth patterns, which

could be used for real time interventions.
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Appendix

Appendix material for CONTENT study data analysis

We present results for the top 10 outliers detected. Table 4 lists the ID of the out-
liers identified and the metric by method. For methods moutliergram, multiMBD,
and multiBD we report the observed depth or distance for the subjects arranged in

ascending order of depth, and descending order of distance.



Table 4: Results for outlier detection for the CONTENT study. Numbers placed in

the column labeled “ID” represent the case numbers for the outliers detected.

Outlier detection in dynamic functional models

moutliergram multiMBD multiBD DPFFRave DPFFRmax DPFFRnr
1D dist 1D depth 1D depth 1D ave |z| 1D max |z| ID nr
145 .24 32 .05 17 .01 12 2.25 7 4.97 12 4
115 .20 112 .06 20 .01 135 2.21 68 4.79 135 4
153 .19 76 .08 30 .01 86 2.19 98 4.27 167 4
95 17 17 .08 32 .01 17 2.14 17 4.11 5 3
189 .16 72 .10 34 .01 188 2.03 40 4.08 40 3
132 .14 66 .10 46 .01 68 2.02 135 3.72 68 3
161 .14 25 11 72 .01 40 1.95 132 3.58 86 3
97 .13 34 12 75 .01 140 1.94 39 3.57 98 3
151 .13 163 .13 112 .01 196 1.82 196 3.51 140 3
63 .12 30 .13 117 .01 98 1.82 12 3.42 161 3
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