

Remote Sensing of Woody Shrub Cover in Desert Grasslands using Canopy Reflectance Modeling and MISR Data

Acknowledgments

Geometric-Optical Modeling of Desert Grassland Canopy Structure with MISR: The work described here is supported by NASA grant NNG04GK91G to EOS project EOS/03-0183-0465 "Quantifying Changes in Carbon Pools with Shrub Invasion of Desert Grasslands using Multi-Angular Data from EOS Terra and Aqua", Chopping PI; Program Manager: Dr. Garik Gutman. Carbon Pools in Desert Grasslands from EOS MISR and MODIS

— people —

Mark J. Chopping Lihong Su Albert Rango John V. Martonchik Debra P. C. Peters

Montclair State University Montclair State University USDA/ARS Jornada Exp. Range NASA/Jet Propulsion Laboratory USDA/ARS Jornada Exp. Range

To improve estimates of C pools in desert grasslands by providing improved maps of:

- plant community type
- canopy structural parameters
- soil/shrub/grass fractional cover

study area

Sevilleta National Wildlife Refuge

Jornada

Range

(JER)

Montclair State University

Vegetation Changes in the JER 1858-1998

Dramatic Vegetation Changes 1858-1998

Vegetation Changes in the Last 150 yrs: Space for Time Substitution

Typical Desert Grassland (SEV)

Montclair State University

Chihuahuan and Plains Grassland (Black Grama Grasslands with Blue Grama)

Honey mesquite (*Prosopis* glandulosa) shrub-coppice dunes

December 12, 2005

- The abundance of woody shrubs has changed and continues to change rapidly, altering C cycling patterns, albedo and energy fluxes; mapping woody plant cover is therefore of great interest.
- How to do this? Satellite remote sensing is the obvious method but often difficult.
- GO modeling is one possibility.

GO Modeling in Desert Grasslands

Objective:

To exploit MISR data with a Geometric-Optical model adapted to desert grasslands to retrieve canopy structure parameters (one or more)

Light-Surface Interactions: BRDF

2000: we used a tilting, digital, multi-spectral camera to acquire MAO images in the Principal Plane @ 3 sun angles.

Light-Surface Interactions: BRDF

Brightness changes greatly a a function of illumination and viewing angles AND the surface (i.e. BRDF is important)

300 m

0.09

0.27

Spectral reflectance at 650 nm

BRDF Effects, Ex. in JER transition zone

Looking in the *Backscattering* direction: shadows are HIDDEN Looking in the *Forward-scattering* direction: shadows are VISIBLE

GO models predict BRF based on the proportions of viewed and sunlit or shaded crowns and background at any angular configuration. Parameters: #density, radius, height, LAI.

Sunlit background

Shaded background

These are DISCRETE OBJECT models

How does a GO model respond to heterogeneous canopies?
GO models operate on mean parameter values
Mutual shadowing could be enhanced, depending on plant density

GO models work well in forested environments

- -- background proportion small relative to the upper canopy
- -- backgrounds are dark with low reflectance anisotropy

Spruce Forest: Background visible?

Looking in the *Backscattering* direction: shadows are HIDDEN Looking in the *Forward-scattering* direction: shadows are VISIBLE

Can GO models work for very heterogeneous canopies which have a highly variable and bright background?

Note that this also assumes a flat background!

We can handle foliage density by considering volume scattering within shrub crowns

Sunlit background

Shaded background

Knowledge of the DESERT background BRDF is essential: there is a lot of bright "background"

Montclair State University

T

Mark Chopping performs field spectroscopy at the JORNEX Transition Site in May, 2002

Mesquite Dunes- sparse, clumped

At the Jornada Range, airplane pilots follow flight-line markers during remote-sensing flyovers. Here, Mark Chopping secures a marker in place.

community types --> BG

Sometimes the BG is uniform... and sometimes NOT!

Creosotebush shrubland (JER)

Tarbush Shrubland (JER)

The desert background reflectance is controlled by the understory

Photo courtesy USDA-ARS Photo Unit (Scott Bauer)

December 12, 2005

MISR Science

The Simple Geometric Model (SGM)

- designed for invertibility, so has to be simple, with a small # of adjustable parameters
- Developed from kernel-driven models; uses the principles of Boolean geometry, pretty much GOMS + Ross volume scattering
- Parameters are mean plant # density, radius, height, shape, and a soil-understory BRDF (Walthall)
- Tested vs. observations and radiosity model driven with field measurements.

CHRIS/Proba Principal Investigator Meeting April 28, 2004

BRDF / GO CR Modeling

Top: Aerial photographs for sparse and dense 25 m² plots. Note the fuzzy areas.

Bottom: large and small shrubs modeled as spheroids showing shadowing (based on airphoto and fieldmeasured maps of all plants except grasses)

Views of dense snakeweed plot generated at various angular configurations by the Radiosity Graphics Method

	Acquisition Angles (°)				
	Solar	Solar	Viewing	Viewing	
	Zenith	Azimuth	Zenith	Azimuth	
(a)	37.50	0.00	14.06	175.10	
(b)	49.00	0.00	40.20	173.80	
(c)	59.25	0.00	23.63	162.90	

BRDF / GO CR Modeling

Modeled (mod) and Observed (obs) Multiangular reflectance factors at three solar zeniths, RMSE=0.014, R²=0.93, shrub width=0.5m, density=0.1025, height=1.374m, LAI=0.9

December 12, 2005

BRDF / GO CR Modeling

Montclair State University

December 12, 2005

MISR Science Team Meeting, Pasadena, CLARIS/Proba Principal Investigator Meeting April 28, 2004

So, we can model the response for selected sites but not across the landscape: --why not?

Reference tarps used for calibration

The problem: the BG BRDF

Application of GO models is difficult in arid environments as the magnitude and anisotropy of the remotely-sensed signal is dominated by the "background" comprised of varying proportions of 1. soil and 2. understory elements (grasses, litter, annuals, forbs). The Challenge is to find a way of obtaining the background BRDF in order to isolate the effects of the larger canopy elements, e.g., to estimate shrub crown cover.

IKONOS Panchromatic Image 05/23/01 Sites are indicated in RED hontclair State University

The problem: understory

We looked at this by studying the soilunderstory behavior at a number of Selected Sites:

 grama grass with some PRGL (mesquite)
 large PRGL on sand
 small PRGL on dense understory
 small PRGL on sparse understory
 small PRGL on dense understory(2)
 mixed area near WestWell

December 12, 2005

600 m

Canopy Configurations

December 12, 2005

Closer still (IKONOS 1 meter pan images)

Montclair State University

We noticed that vol scattering correlates...

MISR Volume Scattering IKONOS Pan Image (brighter = greater volume scattering) This accords with physical principles

December 12, 2005

Modeled vs. Observed MISR Red BRFs

Montclair State University

0.30 Using vol kernel weight as BG predictor Red Band BRF 0.25 0.20 grama grass, few PRGL 0.15 0.30 ã Red Band BRF **∲** 0.25 **₽** ∆ ∆ ∧ ķ 8 Δ 0.20 large PRGL on bright soil 0.15 1 2 8 9 3 4 5 6 Camera Number Observed MISR red band BRFs 0 Х Δ

- simulated with no shrubs via Walthall (i.e., soil-understorey only)
- simulated with measured shrub density and radius, h/b=1.0 and b/r=1.0
- simulated with measured shrub density and radius, h/b=1.0 and b/r=2.0
- simulated with measured shrub density and radius, h/b=0.5 and b/r=1.0 +
 - simulated with measured shrub density and radius, h/b=0.5 and b/r=0.5

Montclair State University

Modeled vs. Observed MISR Red BRFs

Using vol kernel weight as BG predictor

- + simulated with measured shrub density and radius, h/b=0.5 and b/r=1.0
- simulated with measured shrub density and radius, h/b=0.5 and b/r=0.5

Are there alternatives? Yes!

The MISR ρ 0 parameter (magnitude) retrieved via the MRPV BRDF model performs slightly better than the Li-Ross volume scattering parameter when tested against mean Ikonos pan values from which shrubs have been removed.

Modeled vs. Observed MISR

Montclair State University

simulated with measured shrub density and radius, h/b=0.5 and b/r=0.5

Modeled vs. Observed MISR

simulated with measured shrub density and radius, h/b=0.5 and b/r=0.5

Modeled vs. Observed MISR Red BRFs (ho 0)

Using MRPV p0 as BG predictor

Modeled vs. Observed Accuracy is Similar

Soil-understory BRDF simulated with the Walthall model driven using <u>volume</u> <u>scattering magnitude</u> from a Li-Ross model, inverted with a MISR data set. Soil-understory BRDF simulated with the Walthall model driven using <u>p0</u> (diffuse brightness) from the MRPV model, inverted with a MISR data set.

However neither was CORRECT!

Checking the 'grama grass' site: there <u>are</u> mesquite shrubs! Implication: there is not enough information in a single metric to predict the understory reflectance magnitude and anisotropy with sufficient precision. ...so now what?

IKONOS 1 meter pan images for 6 contrasting sites

5

iso, geo, vol, AnB, AnG, AnNIR --> understory BRDF

	p-value			
	w1	w2	w3	w4
Intercept	0.4	0.0	0.3	0.3
iso_misr	0.3	0.5	1.0	0.9
geo_misr	0.5	0.2	0.7	0.8
vol_misr	0.5	0.4	0.1	0.1
blue	0.5	0.6	0.6	0.5
green	0.2	0.3	0.9	0.9
NIR	0.2	0.4	0.9	1.0

			coefficients		
		w1	w2	w3	w4
0.2	Intercept	0.07	0.28	-4.37	0.52
	iso_misr	-1.31	1.06	-3.24	-0.55
	geo_misr	0.50	1.26	12.56	-0.93
	vol_misr	-0.49	-1.01	-67.40	6.85
	blue	-1.40	1.43	56.28	-5.83
	green	2.02	-2.31	-11.02	0.87
	NIR	1.09	-0.92	5.58	-0.03

Bold = two most noteworthy values for each parameter Red = match between coefficient magnitude and *p*. Clearly, the volume scattering weight is important in estimating bg BRDF shape.

December 12, 2005

This is much **better:**

MISR modeled using Li-Ross model kernel weights iso, geo, vol plus An camera blue, green and NIR

 $G.k_G$

MISR Science Team Meeting, Pasadena, CA

(b)

(d)

20

40

60 80

Montclair State University

Much better:

Impact of using estimated (Δ) over optimal (O) **background BRDFs** for 19 cases covering a wide range of shrub cover/size and understory configurations.

Much better: A rather weak relationship but low absolute error

Retrieved *vs* measured fractional shrub cover for a 21 x 21 x 250 m area in Chihuahuan Desert grassland.

N = 441 RMSE = 0.03 $R^2 = 0.19$

Error Distribution ~ normal:

Difference in retrieved *vs* measured fractional shrub cover for a 21 x 21 x 250 m area in Chihuahuan Desert grassland.

Error Distribution: Absolute Difference

Statistics

N =	441
Mean	0.026
Median	0.020
Mode	0.012
St.Dev	0.019

Absolute Difference in retrieved *vs* measured fractional shrub cover for a 21 x 21 x 250 m area in Chihuahuan Desert grassland

What about the spatial match? Fractional Shrub Cover for a 21 x 21 x 250 m area

Measured

Retrieved

Meas-Ret

The green lines are roads and fences, for orientation

1.5 km

 $\left(\begin{array}{c} \uparrow\\ N\end{array}\right)$

December 12, 2005

What about the spatial match? Fractional Shrub Cover for a 21 x 21 x 250 m area

Measured

Retrieved

Abs(Meas-Ret)

 $\left(\begin{array}{c} \mathbf{f} \\ N \end{array}\right)$

The green lines are roads and fences, for orientation

1.5 km

December 12, 2005

Conclusions

- GO models can be used for the estimation of shrub cover in desert grasslands.
- The accurate understory BRDFs required for application of GO models in desert environments can be obtained by multiple regression on the *iso*, *geo*, and *vol* kernel weights from a Li-Ross model adjusted against MISR data + spectral BRFs
- MISR's stable angular sampling is useful in obtaining stable retrievals of the vol kernel weight that is needed to obtain the BG BRDF.

Community Type Mapping with MISR and SVM

