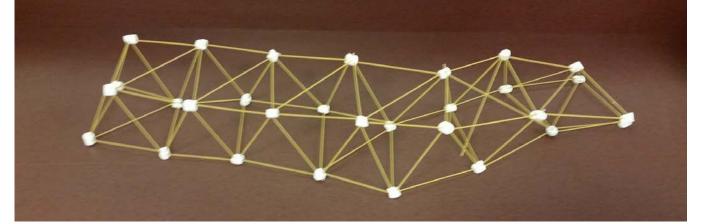
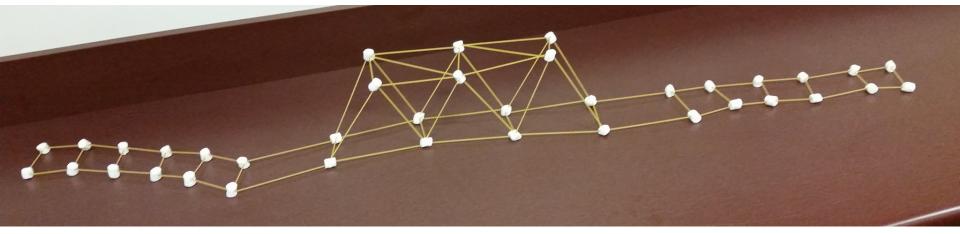
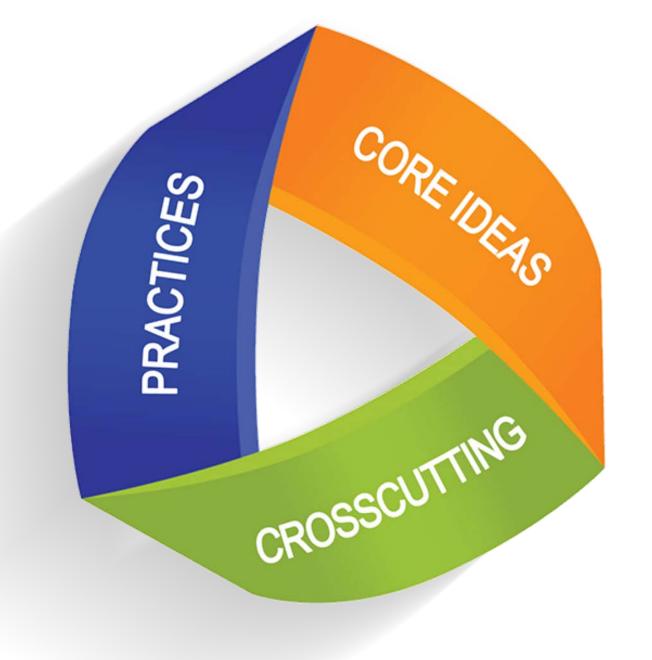


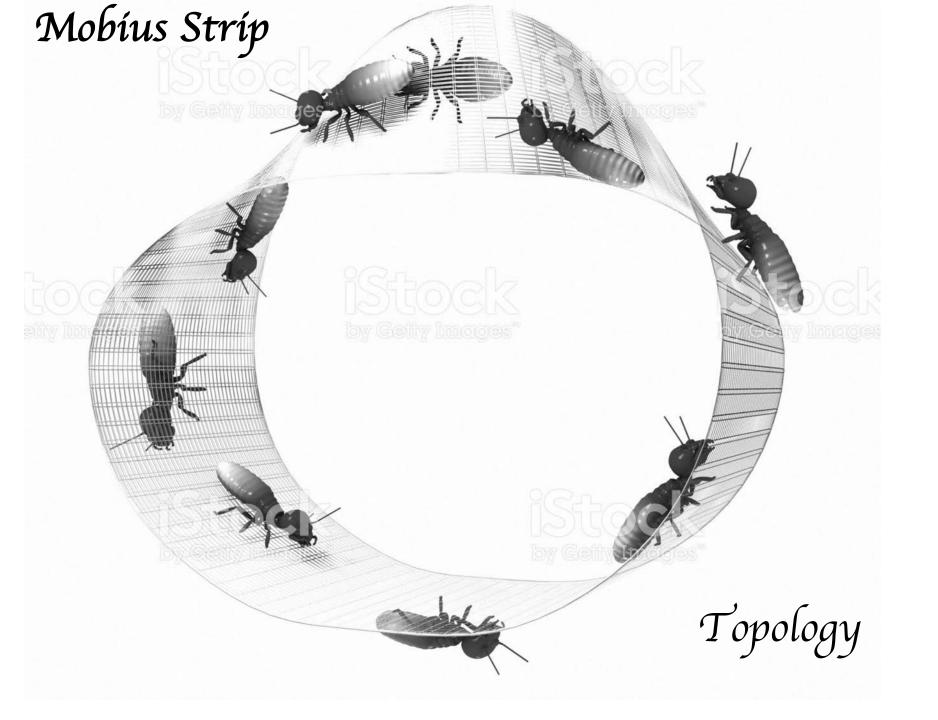
NGSS Fundamentals for Administrators




Jacalyn Willis and Christopher Hunninghake

BRIDGES




Science and Engineering Practices

- 1. Asking questions (science) and defining problems (engineering)
- 2. Developing and using models
- 3. Planning and carrying out investigations
- 4. Analyzing and interpreting data
- 5. Using mathematics and computational thinking
- 6. Constructing explanations (science) Designing solutions (engineering)
- 7. Engaging in argument from evidence
- 8. Obtaining, evaluating, and communicating information.

Cross Cutting Concepts

- 1. Patterns
- 2. Cause and effect
- 3. Scale, proportion, quantity
- 4. Systems and system models
- 5. Energy and matter
- 6. Structure and function
- 7. Stability and change

Conceptual Shifts Necessary for NGSS

- 1- Education must reflect real-world connections in science.
- 2- The Standards are student outcomes, NOT curriculum.
- 3- Concepts should build and spiral across K-12.
- 4- A focus on deeper understandings and applications.
- 5- Science and Engineering will be integrated K-12.
- 6- Prepare students for college, careers, and citizenship.
- 7- ELA /Math Common Core is coordinated with the NGSS.
 Appendix Page 28: Common Core Integration Venn Diagram.

Math

M4. Models with mathematics

Science

M1: Make sense of problems and persevere in solving them

S2: Develop & use models S1: Ask questions and define

problems

M2: Reason abstractly & quantitatively

\$5: Use mathematics &

S3: Plan & carry out investigations

M6: Attend to precision

computational thinking

S4: Analyze & interpret data

M7: Look for & make use of structure

E2: Build a strong base of knowledge through content rich texts

S6: Construct explanations & design solutions

M8: Look for & make use of regularity in repeated

reasoning

E5: Read, write, and speak grounded in evidence

M3 & E4: Construct viable

arguments and critique reasoning of others

S8: Obtain. evaluate, & communicate information

strategically & capably

& digital media

E6: Use

technology

S7: Engage in argument from evidence

E3: Obtain, synthesize and report findings clearly and effectively in response to task and purpose

M5: Use appropriate tools strategically

> **E1:** Demonstrate independence in reading complex texts, and writing and speaking about them

E7: Come to understand other perspectives and cultures through reading, listening, and collaborations

pg. 47

Commonalities Among the Practices in Science, Mathematics and English Language Arts

ELA

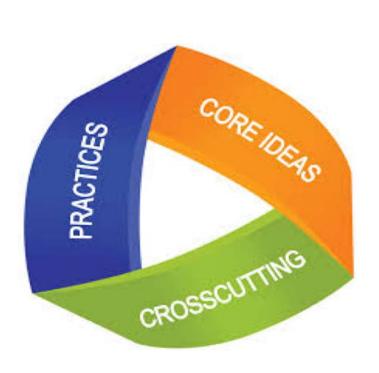
ELA Common Core State Standards in Science Literacy

Reading Tips for Science Texts

- 1. Reflection on prior knowledge
- 2. Locate new material
- 3. Use the graphics
- 4. Learn the jargon
- 5. Summarize the main idea
- 6. Teach what you learned to someone else

Disciplinary Core Ideas

Life	e Science	Physical Science
LS1:	From Molecules to Organisms:	PS1: Matter and Its Interactions
	Structures and Processes	PS2: Motion and Stability: Forces and
LS2:	Ecosystems: Interactions, Energy, and	Interactions
	Dynamics	PS3: Energy
LS3:	Heredity: Inheritance and Variation of	PS4: Waves and Their Applications in
	Traits	Technologies for Information Transfer
LS4:	Biological Evolution: Unity and Diversity	
Ear	th & Space Science	Engineering & Technology
ESS1	: Earth's Place in the Universe	ETS1: Engineering Design
ESS2: Earth's Systems		ETS2: Links Among Engineering,
ESS3	: Earth and Human Activity	Technology, Science, and Society


NGSS Matrix Organized by Disciplinary Core Ideas

		www.nsta.org/ngss			ww.nsta.org/ngss
		Life Science	Earth & Space Science	Physical Science	Engineering
Elementary School	к	K-LS1 From Molecules to Organisms: Structures and Processes	K-ESS2 Earth's Systems K-ESS3 Earth and Human Activity	K-PS2 Motion and Stability: Forces and Interactions K-PS3 Energy	
	1	1-LS1 From Molecules to Organisms: Structures and Processes 1-LS3 Heredity: Inheritance and Variation of Traits	1-ESS1 Earth's Place in the Universe	1-PS4 Waves and Their Applications in Technologies for Information Transfer	K-2-ETS1 Engineering Design
	2	2-LS2 Ecosystems: Interactions, Energy, and Dynamics 2-LS4 Biological Evolution: Unity and Diversity	2-ESS1 Earth's Place in the Universe 2-ESS2 Earth's Systems	2-PS1 Matter and Its Interactions	
	3	3-LS1 From Molecules to Organisms: Structures and Processes 3-LS2 Ecosystems: Interactions, Energy, and Dynamics 3-LS3 Heredity: Inheritance and Variation of Traits 3-LS4 Biological Evolution: Unity and Diversity	3-ESS2 Earth's Systems 3-ESS3 Earth and Human Activity	3-PS2 Motion and Stability: Forces and Interactions	
	4	4-LS1 From Molecules to Organisms: Structures and Processes	4-ESS1 Earth's Place in the Universe 4-ESS2 Earth's Systems 4-ESS3 Earth and Human Activity	4-PS3 Energy 4-PS4 Waves and Their Applications in Technologies for Information Transfer	3-5-ETS1 Engineering Design
	5	5-LS1 From Molecules to Organisms: Structures and Processes 5-LS2 Ecosystems: Interactions, Energy, and Dynamics	5-ESS1 Earth's Place in the Universe 5-ESS2 Earth's Systems 5-ESS3 Earth and Human Activity	5-PS1 Matter and Its Interactions 5-PS2 Motion and Stability: Forces and Interactions 5-PS3 Energy	
Middle		MS-LS1 From Molecules to Organisms: Structures and Processes MS-LS2 Ecosystems: Interactions, Energy, and Dynamics MS-LS3 Heredity: Inheritance and Variation of Traits MS-LS4 Biological Evolution: Unity and Diversity	MS-ESS1 Earth's Place in the Universe MS-ESS2 Earth's Systems MS-ESS3 Earth and Human Activity	MS-PS1 Matter and Its Interactions MS-PS2 Motion and Stability: Forces and Interactions MS-PS3 Energy HS-PS4 Waves and Their Applications in Technologies for Information Transfer	MS-ETS1 Engineering Design
High	School	HS-LS1 From Molecules to Organisms: Structures and Processes HS-LS2 Ecosystems: Interactions, Energy, and Dynamics HS-LS3 Heredity: Inheritance and Variation of Traits HS-LS4 Biological Evolution: Unity and Diversity	HS-ESS1 Earth's Place in the Universe HS-ESS2 Earth's Systems HS-ESS3 Earth and Human Activity	HS-PS1 Matter and Its Interactions HS-PS2 Motion and Stability: Forces and Interactions HS-PS3 Energy HS-PS4 Waves and Their Applications in Technologies for Information Transfer	HS-ETS1 Engineering Design

This matrix was prepared by NSTA based on the release of the Next Generation Science Standards in April 2013

Performance Expectations NGSS Fundamentals

4-LS1 From Molecules to Organisms: Structures and Processes

Students who demonstrate understanding can:

4-LS1-1. Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.

Clarification Statement: Examples of structures could include thorns, stems, roots, colored petals, heart, stomach, lung, brain, and skin. **Assessment Boundary:** Assessment is limited to macroscopic structures within plant and animal systems.

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Engaging in Argument from Evidence Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.	Structure and Function Plants and animals have both internal and external structures that serve various functions in growth, survival, behavior, and reproduction. (4-LS1-1)	Systems and System Models • A system can be described in terms of its components and their interactions. (4-LS1-1)

Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of

what is to be assessed.

They are not instructional strategies or objectives for a lesson.

• Construct an argument with evidence, data,

and/or a model. (4-LS1-1)

4-LS1 From Molecules to Organisms: Structures and Processes

Students who demonstrate understanding can:

4-LS1-1. Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.

Clarification Statement: Examples of structures could include thorns, stems, roots, colored petals, heart, stomach, lung, brain, and skin. **Assessment Boundary:** Assessment is limited to macroscopic structures within plant and animal systems.

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts

Engaging in Argument from Evidence

Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.

• Construct an argument with evidence, data, and/or a model. (4-LS1-1)

LS1.A: Structure and Fu

 Plants and animals hav and external structures various functions in gro behavior, and reproduce

Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of

what is to be assessed.

They are not instructional strategies or objectives for a lesson.

4-LS1 From Molecules to Organisms: Structures and Processes

Students who demonstrate understanding can:

4-LS1-1. Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.

Clarification Statement: Examples of structures could include thorns, stems, roots, colored petals, heart, stomach, lung, brain, and skin. **Assessment Boundary:** Assessment is limited to macroscopic structures within plant and animal systems.

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Disciplinary Core Ideas

Crosscutting Concepts

Engaging in Argument from Evidence

Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.

 Construct an argument with evidence, data, and/or a model. (4-LS1-1)

LS1.A: Structure and Fu

 Plants and animals hav and external structures various functions in gro behavior, and reproduc

Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of

what is to be assessed.

They are not instructional strategies or objectives for a lesson.

4-LS1 From Molecules to Organisms: Structures and Processes

Students who demonstrate understanding can:

4-LS1-1. Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.

Clarification Statement: Examples of structures could include thorns, stems, roots, colored petals, heart, stomach, lung, brain, and skin. **Assessment Boundary:** Assessment is limited to macroscopic structures within plant and animal systems.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Engaging in Argument from Evidence Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions. • Construct an argument with evidence, data, and/or a model. (4-LS1-1)	• Plants and animals have both internal and external structures that serve various functions in growth, survival, • Note: Performance exp practices, core ideas, as concepts into a single swhat is to be assessed. They are not instruction objectives for a lesson.	nd crosscutting tatement of d .

Traditional Vs. NGSS Action Verbs

Structure and Properties of Matter

Current State Middle School Science Standard

- a. Explore the scientific theory of atoms (also known as atomic theory) by recognizing that atoms are the smallest unit of an element and are composed of subatomic particles (electrons surrounding a nucleus containing protons and neutrons).
- b. Explore the scientific theory of atoms (also known as atomic theory) by using models to explain the motion of particles in solids, liquids, and gases.
- c. Distinguish among mixtures (including solutions) and pure substances.
- d. Classify and compare substances on the basis of characteristic physical properties that can be demonstrated or measured: for example, density; thermal or electrical conductivity; solubility; magnetic properties; melting and boiling points; and know that these properties are independent of the amount of the sample.
- e. Distinguish between changes in matter as physical (i.e., physical change) or chemical (development of a gas, formation of precipitate, and change in color).
- f. Recognize that there are a finite number of elements and that their atoms combine in a multitude of ways to produce compounds that make up all of the living and nonliving things that we encounter.
- g. Recognize that elements are grouped in the periodic table according to similarities of their properties.

NGSS Middle School Sample

Students who demonstrate understanding can:

- 1. Develop models to describe the atomic composition of simple molecules and extended structures.
- 2. Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.
- 3. Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.
- 4. Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.
- 5. Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.
- 6. Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.

NGSS Teaching Strategies

- Inquiry and Discovery
- Classroom discourse by STUDENTS: see "Talk Moves"
- Student-centered investigations: see 5-E's model
- Scientific models show how things work, not just structures
- Formative assessment: see Page Keeley books
- Learning as a social process
- Argumentation: CER- Claims, Evidence, Reasoning
- Writing: a tool to articulate ideas and advance understanding

NGSS RESOURCES

- The National Science Teachers Association (NSTA)Online standards: ngss.nsta.org
- Nextgenscience.org
- App for tablets and mobiles: ngss
- Book format: National Academies Press <u>www.nap.edu</u>
- A Framework for K-12 Science Education
- Workshops: PRISM/ Montclair State University prism.montclair.edu

In Summary: What's Different?

- Fewer topics, deeper coverage, more time on topics
- Emphasis on big ideas and frameworks of science
- Experiences in the practices of science and engineering
- Integration with Language Arts and Mathematics
- More guidance on vertical alignment of curriculum
- Greater use of teaching strategies that are research-based