Photo of University Hall

View Profile Page

Faculty/Staff Login:

Marc Favata

Chairperson, Physics and Astronomy

Office:
Richardson Hall 213
Email:
favatam@montclair.edu
Phone:
973-655-4406
Degrees:
B.S., California Institute of Technology
M.S., Cornell University
Ph.D., Cornell University
vCard:
Download vCard

Profile

My primary research interests involve the detection of gravitational waves and how those detections allow us to observe the universe in a new and unique way. Gravitational waves are ripples in the curvature of spacetime produced by the collisions of black holes or neutron stars. I am part of an international collaboration called the LIGO project (the Laser Interferometer Gravitational-wave Observatory, http://www.ligo.org/). LIGO's goal is to observe the universe with gravitational waves using a network of laser interferometers, each consisting of a giant 4-km-long L-shaped device. On September 14, 2015 LIGO achieved this goal with the first direct detection of gravitational waves from a pair of colliding black holes. This event--one of the most significant physics discoveries of the past 50 years--has given birth to the field of gravitational-wave astronomy. Many more detections followed, including the first binary neutron star collision observed on August 17, 2017. My research focuses on improving the models that LIGO and other gravitational-wave detectors use to analyze their signals. I am especially interested in how gravitational-wave observations will probe the interiors of neutron stars and test our understanding of Einstein’s description of gravity. My research at Montclair State has been supported by NSF RUI and CAREER grants, and by the Simons Foundation.

I also work on education and public outreach related to LIGO and gravitational waves. In addition to giving public lectures, organizing exhibits at science or astronomy exhibitions, and managing https://www.ligo.org/ , I have developed--along with Montclair State students--a website to explore the analogy between gravitational waves and sound. The detection of gravitational-wave signals now allows us to "listen" to the universe. Explore this further at our site: http://www.soundsofspacetime.org .

As the Chairperson of the Physics & Astronomy Department, I am committed to fostering a welcoming environment that promotes academic excellence for faculty and students. If you enjoy science and math, have a passion for understanding how nature works at a fundamental level, and are willing to work incredibly hard, I encourage you to consider a major or minor in Physics. If you are considering a teaching career, look into the high school physics teacher pathways that our department offers. Learn more on our department webpage:
https://www.montclair.edu/physics-astronomy/why-study-physics/
If you are simply interested in physics, I encourage you to attend one of our department seminars or events: https://www.montclair.edu/physics-astronomy/seminars/

My teaching at Montclair State focuses on courses that support the astronomy concentration. Along with the calculus-based intro physics courses (PHYS 191/192), I regularly teach Astronomy for Everyone (PHYS 180), Astronomy for Physicists (PHYS 280), Astrophysics (PHYS 480), General Relativity (PHYS 461, MATH 461/562), Intermediate Mechanics (PHYS 210), and our seminar courses (PHYS 198/PHYS 300).

Originally from Bergen County, I received my undergraduate degree from Caltech and graduate degrees from Cornell. I then held postdoctoral positions at the Kavli Institute for Theoretical Physics (at UCSB), the NASA/Caltech Jet Propulsion Laboratory, and the Center for Gravitation and Cosmology at the University of Wisconsin-Milwaukee.

I have been a visiting scholar/associate in theoretical physics at Caltech, the Kavli Institute for Theoretical Physics (https://www.kitp.ucsb.edu/apply/fellowships/kitp-scholars/directory), and the Max Planck Institute for Gravitational Physics (Potsdam, Germany).

Specialization

Theoretical astrophysics, especially general relativity, compact objects (neutron stars, black holes), and gravitational-wave astronomy.

Resume/CV

Links